论文标题
非理想CVD石墨烯设备中的多尺度不一致的电子传输特性
Multi-scale Incoherent Electronic Transport Properties in Non-ideal CVD Graphene Devices
论文作者
论文摘要
在这项研究工作中,对卷到滚动的化学蒸气沉积的石墨烯设备电子传输特性进行了基准测试,以阐明和理解石墨烯设备现实世界中商业应用中的迁移率降解。石墨烯中的多种设备设计形态和具有不同背景材料组成和加工配方的二维材料在设备中包含各种散射源。为了了解滚动到滚动化学蒸气沉积石墨烯生产设备中移动性降解的性质,我们采用了多尺度,多物理自下而上的,非平衡的绿色基于功能的基于功能的量子运输形式主义。在此框架中,我们通过数值结合了各种散射机制,以在计算的最后阶段推断出测量和迁移率,以观察各种散射潜在的影响对生产装置性能的影响。我们已经分析了传输,电子电荷密度,静电泊松电势,能量分辨通量密度和电流 - 电压特性的变化,并在各种石墨烯设备中推断出具有不同散射电势的Drude迁移率。这些散射机制将散射势视为在两循环的自洽的泊松 - 非平衡绿色功能迭代的第三循环中的一阶声子dyson自我能源术语。此外,通过广义接触自我能力散射计算实现的多种散射方案将接触散射的效果归因于准焊接运输限制的石墨烯设备。在此方案中,所有物理散射机制的效果都将其分为一个能量不确定性或散射速率参数,以包括在设备的接触式自我能量相互作用项中,该相互作用的相互作用量子带电的量子的不确定性限制了。
In this research work, roll-to-roll chemical vapor deposited graphene device electronic transport properties are benchmarked to elucidate and comprehend mobility degradation in the real-world commercial application of graphene devices. Multifarious device design morphology in the graphene and two-dimensional material with diverse background materials compositions and processing recipes incorporate various scattering sources in the devices. To understand the nature of mobility degradation in roll-to-roll chemical vapor deposited graphene production devices, we employed multi-scale, multi-physics bottom-up, non-equilibrium Green's function-based quantum transport formalism. In this framework, we numerically incorporate various scattering mechanisms to deduce the measurand mobility at the last stage of computation to observe various scattering potential impacts on the production device performance. We have analyzed the variation in transmission, electronic charge density, electrostatic Poisson potential, energy-resolved flux density, and current-voltage characteristics and inferred the Drude mobility with different scattering potentials in various graphene devices. These scattering mechanisms treat scattering potentials as the first-order phonon Dyson self-energy term in the third loop of the two-looped self-consistent Poisson-Non-equilibrium Green's function iteration. Furthermore, multiple scattering scenarios implemented through a generalized contact self-energy scattering calculation ascribe the effect of contact scattering to the graphene device in quasi-ballistic transport limit. In this scheme, the effect of all the physical scattering mechanisms is lumped into one energy uncertainty or scattering rate parameter to include in the device's contact self-energy interaction term bound by the upper limit of Heisenberg uncertainty for the interacting quantum charged particles.