论文标题

耗散性旋转轨道问题中的准周期吸引子的准确计算直至分解

Accurate computations up to break-down of quasi-periodic attractors in the dissipative spin-orbit problem

论文作者

Calleja, Renato, Celletti, Alessandra, Gimeno, Joan, de la Llave, Rafael

论文摘要

我们考虑了一种天体力学模型:带有耗散潮汐扭矩的自旋轨道问题,这是保守系统的奇异扰动。本文的目的是表明,可以准确可靠地计算出非常接近分解的参数值的准周期吸引子。因此,可以在分解时获取有关数学现象的信息。我们使用的方法结合了相同时间的数值和严格的改进。其中(i)形式主义是基于研究自旋轨道问题的时间图(这降低了问题的维度),并且具有数学优势。 (ii)非常准确地集成了ode的ode(高阶泰勒方法以扩展精度实现)在其喷气机处进行地图; (iii)一种非常有效的KAM方法,用于计算吸引子及其切线空间的地图(四二次收敛步骤,存储要求低,并且操作计数较低); (iv)算法由严格的A-posteriori KAM定理支持,该定理确定如果算法会产生具有合理条件数字的功能方程的非常近似的解。然后附近有一个真正的解决方案。 (v)如果给出足够的计算机资源,则可以保证延续算法任意接近存在的边界。作为我们一直保持到崩溃的准确性的副产品,我们研究了无限尺寸空间重新归一化组中使用的摩托车的几个量表。与先前研究的简单模型相反,自旋轨道问题分解时的行为不满足标准缩放关系,这意味着旋转轨道问题不会由重量化操作员的双曲固定点描述。

We consider a Celestial Mechanics model: the spin-orbit problem with a dissipative tidal torque, which is a singular perturbation of a conservative system. The goal of this paper is to show that it is possible to compute quasi-periodic attractors accurately and reliably for parameter values extremely close to the breakdown. Therefore, it is possible to obtain information on mathematical phenomena at breakdown. The method we use incorporates the same time numerical and rigorous improvements. Among them (i) the formalism is based on studying the time-one map of the spin-orbit problem (which reduces the dimensionality of the problem) and has mathematical advantages; (ii) very accurate integration of the ODE (high order Taylor methods implemented with extended precision) for the map at its jets; (iii) a very efficient KAM method for maps which computes the attractor and its tangent spaces ( quadratically convergent step with low storage requirements, and low operation count); (iv) the algorithms are backed by a rigorous a-posteriori KAM Theorem, which establishes that if the algorithm, produces a very approximate solution of functional equation with reasonable condition numbers. then there is a true solution nearby; and (v) the continuation algorithm is guaranteed to reach arbitrarily close to the border of existence if it is given enough computer resources. As a byproduct of the accuracy that we maintain till breakdown, we study several scale invariant observables of the tori used in the renormalization group of infinite dimensional spaces. In contrast with previously studied simple models, the behavior at breakdown of the spin-orbit problem does not satisfy standard scaling relations which implies that the spin-orbit problem is not described by a hyperbolic fixed point of a renormalization operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源