论文标题

超收缩符合随机凸壳:随机多元库的分析

Hypercontractivity Meets Random Convex Hulls: Analysis of Randomized Multivariate Cubatures

论文作者

Hayakawa, Satoshi, Oberhauser, Harald, Lyons, Terry

论文摘要

鉴于概率度量$ \ MATHCAL {X} $和矢量值函数$φ$的概率度量$μ$,一个常见的问题是在$ \ Mathcal {x} $上构建一个离散的概率度量,以便在$φ$下的这两个概率指标的推动力是相同的。这种结构是数值集成方法的核心,这些方法以各种名称(例如正交,立方体或重组)运行。一种自然的方法是将$μ$的样品点从$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $φ$的平均值中。在这里,当$φ$通过使用所谓的超收缩率表现出分级结构时,我们分析了这种方法的计算复杂性。所得定理不仅涵盖了多元多项式的经典群组案例,而且还涵盖了路径空间的集成以及用于产品测量的内核正交。

Given a probability measure $μ$ on a set $\mathcal{X}$ and a vector-valued function $φ$, a common problem is to construct a discrete probability measure on $\mathcal{X}$ such that the push-forward of these two probability measures under $φ$ is the same. This construction is at the heart of numerical integration methods that run under various names such as quadrature, cubature, or recombination. A natural approach is to sample points from $μ$ until their convex hull of their image under $φ$ includes the mean of $φ$. Here we analyze the computational complexity of this approach when $φ$ exhibits a graded structure by using so-called hypercontractivity. The resulting theorem not only covers the classical cubature case of multivariate polynomials, but also integration on pathspace, as well as kernel quadrature for product measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源