论文标题
上下文感知的贝叶斯混合多项式logit模型
Context-aware Bayesian Mixed Multinomial Logit Model
论文作者
论文摘要
混合的多项式logit模型在不同选择情况下假设决策者的恒定偏好参数,对于某些选择模型应用程序而言,这可能被认为太强了。本文提出了一种有效的方法来模拟与上下文相关的响应内异质性,从而介绍了上下文感知的贝叶斯混合混合多项式logit模型的概念,其中神经网络将上下文信息映射到每个选择场合每个个体的偏好参数的可解释变化。提出的模型提供了几个关键优势。首先,它支持连续变量和离散变量,以及两种变量之间的复杂非线性相互作用。其次,每个上下文规范都是由神经网络共同考虑的,而不是独立考虑的每个变量。最后,由于神经网络参数在所有决策者中共享,因此它可以利用其他决策者的信息来推断特定上下文对特定决策者的影响。即使上下文感知的贝叶斯混合多项式logit模型允许属性之间的灵活相互作用,但与混合的多项式logit模型相比,计算复杂性的增加是较小的。我们在模拟研究中说明了所提出模型的概念和解释。此外,我们从旅行行为领域提出了一项现实世界中的案例研究,这是一种基于大规模的,众包的GPS轨迹数据集,包括119,4448次旅行,由8,555名骑自行车的人进行。
The mixed multinomial logit model assumes constant preference parameters of a decision-maker throughout different choice situations, which may be considered too strong for certain choice modelling applications. This paper proposes an effective approach to model context-dependent intra-respondent heterogeneity, thereby introducing the concept of the Context-aware Bayesian mixed multinomial logit model, where a neural network maps contextual information to interpretable shifts in the preference parameters of each individual in each choice occasion. The proposed model offers several key advantages. First, it supports both continuous and discrete variables, as well as complex non-linear interactions between both types of variables. Secondly, each context specification is considered jointly as a whole by the neural network rather than each variable being considered independently. Finally, since the neural network parameters are shared across all decision-makers, it can leverage information from other decision-makers to infer the effect of a particular context on a particular decision-maker. Even though the context-aware Bayesian mixed multinomial logit model allows for flexible interactions between attributes, the increase in computational complexity is minor, compared to the mixed multinomial logit model. We illustrate the concept and interpretation of the proposed model in a simulation study. We furthermore present a real-world case study from the travel behaviour domain - a bicycle route choice model, based on a large-scale, crowdsourced dataset of GPS trajectories including 119,448 trips made by 8,555 cyclists.