论文标题

具有粗糙漂移的二次前向后SDE的可不同性

Differentiability of quadratic forward-backward SDEs with rough drift

论文作者

Imkeller, Peter, Pellat, Rhoss Likibi, Pamen, Olivier Menoukeu

论文摘要

在本文中,我们考虑二次向前的SDES(QFBSDE),因为{}向前方程中的漂移无法满足全球标准的Lipschitz条件,并且是向后系统的驱动程序{laveeres} type $ f(| y | y | y | y | y | y |)| z |^2,$ f $的非线性。我们证明了QFBSDE的Malliavin和经典导数,并提供了这些过程的表示。我们从\ cite {imkdosreis}的意义上研究了该系统的数值近似值,其中作者认为漂移是Lipschitz,而BSDE的驱动程序在传统意义上是二次的(即$ f $是一个正常数)。我们表明,收敛速率与\ cite {imkdosreis}中的收敛速度相同

In this paper, we consider quadratic forward-backward SDEs (QFBSDEs), for {which} the drift in the forward equation does not satisfy the standard globally Lipschitz condition and the driver of the backward system {possesses} nonlinearity of type $f(|y|)|z|^2,$ where $f$ is any locally integrable function. We prove both the Malliavin and classical derivative of the QFBSDE and provide representations of these processes. We study a numerical approximation of this system in the sense of \cite{ImkDosReis} in which the authors assume that the drift is Lipschitz and the driver of the BSDE is quadratic in the traditional sense (i.e., $f$ is a positive constant). We show that the rate of convergence is the same as in \cite{ImkDosReis}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源