论文标题
部分可观测时空混沌系统的无模型预测
Knowledge-Driven New Drug Recommendation
论文作者
论文摘要
药物建议根据医生根据患者的健康状况为医生开出个性化药物。现有的药物推荐解决方案采用了有监督的多标签分类设置,仅与现有药物一起使用许多患者的处方数据。但是,新批准的药物没有太多的历史处方数据,无法利用现有的药物建议方法。为了解决这个问题,我们将新药建议提出为一些摄入的学习问题。然而,直接应用现有的少数学习算法面临两个挑战:(1)疾病和药物之间的复杂关系以及(2)众多符合条件但尚未使用新药的假阴性患者。为了应对这些挑战,我们提出了Edge,可以迅速适应一些新药的建议,该药物具有少数支持患者的处方数据有限的新药。 Edge保持了依赖药物的多型多型学习者,以弥合现有药物和新药之间的差距。具体而言,Edge利用药物本体论将新药与具有相似治疗效果的现有药物联系起来,并学习基于本体的药物表示。这种药物表示形式用于自定义表型驱动的患者表示的度量空间,该指标由一组捕获复杂患者健康状况的表型组成。最后,Edge使用外部药物疾病知识库消除了假阴性监督信号。我们在两个现实世界数据集上评估了Edge:公共EHR数据(MIMIC-IV)和私人工业索赔数据。结果表明,与最佳基线相比,Edge在ROC-AUC得分方面取得了7.3%的提高。
Drug recommendation assists doctors in prescribing personalized medications to patients based on their health conditions. Existing drug recommendation solutions adopt the supervised multi-label classification setup and only work with existing drugs with sufficient prescription data from many patients. However, newly approved drugs do not have much historical prescription data and cannot leverage existing drug recommendation methods. To address this, we formulate the new drug recommendation as a few-shot learning problem. Yet, directly applying existing few-shot learning algorithms faces two challenges: (1) complex relations among diseases and drugs and (2) numerous false-negative patients who were eligible but did not yet use the new drugs. To tackle these challenges, we propose EDGE, which can quickly adapt to the recommendation for a new drug with limited prescription data from a few support patients. EDGE maintains a drug-dependent multi-phenotype few-shot learner to bridge the gap between existing and new drugs. Specifically, EDGE leverages the drug ontology to link new drugs to existing drugs with similar treatment effects and learns ontology-based drug representations. Such drug representations are used to customize the metric space of the phenotype-driven patient representations, which are composed of a set of phenotypes capturing complex patient health status. Lastly, EDGE eliminates the false-negative supervision signal using an external drug-disease knowledge base. We evaluate EDGE on two real-world datasets: the public EHR data (MIMIC-IV) and private industrial claims data. Results show that EDGE achieves 7.3% improvement on the ROC-AUC score over the best baseline.