论文标题

部分可观测时空混沌系统的无模型预测

Class-Specific Explainability for Deep Time Series Classifiers

论文作者

Doddaiah, Ramesh, Parvatharaju, Prathyush, Rundensteiner, Elke, Hartvigsen, Thomas

论文摘要

解释性可帮助用户相信时间序列分类的深度学习解决方案。但是,多级时间序列分类器的现有解释性方法一次集中在一个类上,忽略了类之间的关系。取而代之的是,当分类器在许多类之间选择时,有效的解释必须表明将所选类别与其他类别区分开的原因。现在,我们将这个概念形式化,研究深度时间序列分类器的特定班级解释性问题,这是一个充满挑战且有影响力的问题。我们设计了一种新颖的解释性方法Demux,该方法通过适应性地确保其解释焦点在输入时间序列中专门用于其预测类中的输入时间序列中的区域,从而学习了显着图来解释深度级别的时间序列分类器。 Demux采用了一种基于梯度的方法,该方法由三个相互依存的模块组成,这些模块结合起来生成一致的,特定于类的显着图,这些图仍然忠于分类器的行为,但最终用户很容易理解。我们的实验研究表明,在解释两种类型的深度时间序列分类器时,Demux在五个流行数据集上的表现优于九个最先进的替代方案。此外,通过案例研究,我们证明了Demux的解释确实突出了分类器眼中预测阶级与其他阶级的原因。我们的代码可在https://github.com/rameshdoddaiah/demux上公开获取。

Explainability helps users trust deep learning solutions for time series classification. However, existing explainability methods for multi-class time series classifiers focus on one class at a time, ignoring relationships between the classes. Instead, when a classifier is choosing between many classes, an effective explanation must show what sets the chosen class apart from the rest. We now formalize this notion, studying the open problem of class-specific explainability for deep time series classifiers, a challenging and impactful problem setting. We design a novel explainability method, DEMUX, which learns saliency maps for explaining deep multi-class time series classifiers by adaptively ensuring that its explanation spotlights the regions in an input time series that a model uses specifically to its predicted class. DEMUX adopts a gradient-based approach composed of three interdependent modules that combine to generate consistent, class-specific saliency maps that remain faithful to the classifier's behavior yet are easily understood by end users. Our experimental study demonstrates that DEMUX outperforms nine state-of-the-art alternatives on five popular datasets when explaining two types of deep time series classifiers. Further, through a case study, we demonstrate that DEMUX's explanations indeed highlight what separates the predicted class from the others in the eyes of the classifier. Our code is publicly available at https://github.com/rameshdoddaiah/DEMUX.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源