论文标题
通过图形原始信息传递神经网络的提升消息传递神经网络
Uplifting Message Passing Neural Network with Graph Original Information
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Message passing neural networks (MPNNs) learn the representation of graph-structured data based on graph original information, including node features and graph structures, and have shown astonishing improvement in node classification tasks. However, the expressive power of MPNNs is upper bounded by the first-order Weisfeiler-Leman test and its accuracy still has room for improvement. This work studies how to improve MPNNs' expressiveness and generalizability by fully exploiting graph original information both theoretically and empirically. It further proposes a new GNN model called INGNN (INformation-enhanced Graph Neural Network) that leverages the insights to improve node classification performance. Extensive experiments on both synthetic and real datasets demonstrate the superiority (average rank 1.78) of our INGNN compared with state-of-the-art methods.