论文标题
在平坦带系统中掺杂三重量子量子液体的拓扑超导性
Topological superconductivity from doping a triplet quantum spin liquid in a flat band system
论文作者
论文摘要
我们探索装饰蜂窝晶格(DHL)上强相互作用的电子中的超导性。易于平面的铁磁相互作用是由莫特绝缘阶段的自旋轨道耦合引起的,该耦合有利于三重态共振价键旋转液态。孔掺杂会导致平面带和三重型超导性的部分职业。订单参数对掺杂水平和交互参数高度敏感,因为平面频段导致多个频道的不稳定性,因此发现了$ p+ip $,$ f $和$ p+f $ superconductivity。通常,一阶过渡分开不同的超导阶段,但是第二阶转换将两个时间逆转对称性分开,$ p+ip $阶段具有不同的Chern号码($ν= 0 $和1)。拓扑($ν= 1 $)超导体中的Majorana边缘模式几乎是由于在费米级别具有平坦频段的系统中具有强的电子相关性而定位的。这表明这些模式对于拓扑量子计算可能很有用。随着温度降低,“混合” $ p+f $状态不需要两个相变。这是因为该模型的对称性在$ p $ - 波阶段降低,允许$ f $ - 波基函数的任意混合物作为泛音。我们表明,DHL的每个单位细胞的多个位点,因此在Fermi Energy附近的多个频段,导致了真实和相互空间中的淋巴结结构非常不同。我们强调,这应该是多站点/多波段超导体的通用特征。
We explore superconductivity in strongly interacting electrons on a decorated honeycomb lattice (DHL). An easy-plane ferromagnetic interaction arises from spin-orbit coupling in the Mott insulating phase, which favors a triplet resonance valence bond spin liquid state. Hole doping leads to partial occupation of a flat band and to triplet superconductivity. The order parameter is highly sensitive to the doping level and the interaction parameters, with $p+ip$, $f$ and $p+f$ superconductivity found, as the flat band leads to instabilities in multiple channels. Typically, first order transitions separate different superconducting phases, but a second order transition separates two time reversal symmetry breaking $p+ip$ phases with different Chern numbers ($ν=0$ and 1). The Majorana edge modes in the topological ($ν=1$) superconductor are almost localized due to the strong electronic correlations in a system with a flat band at the Fermi level. This suggests that these modes could be useful for topological quantum computing. The `hybrid' $p+f$ state does not require two phase transitions as temperature is lowered. This is because the symmetry of the model is lowered in the $p$-wave phase, allowing arbitrary admixtures of $f$-wave basis functions as overtones. We show that the multiple sites per unit cell of the DHL, and hence multiple bands near the Fermi energy, lead to very different nodal structures in real and reciprocal space. We emphasize that this should be a generic feature of multi-site/multi-band superconductors.