论文标题
CSS:将自我训练和自我监督的学习结合在一起,以进行几次对话状态跟踪
CSS: Combining Self-training and Self-supervised Learning for Few-shot Dialogue State Tracking
论文作者
论文摘要
几乎没有射击的对话状态跟踪(DST)是一个现实的问题,它可以使用有限的标记数据来训练DST模型。现有的几种方法主要是从外部标记的对话数据中学到的知识(例如,从问答,对话摘要,机器阅读理解任务等)中学到DST,而收集大量外部标记的数据是辛苦的,并且外部数据可能对DST特定的任务有效地有效。在本文中,我们提出了一个名为CSS的几个DST框架,该框架结合了自训练和自我监督的学习方法。 DST任务的未标记数据已纳入自我训练的迭代中,在该迭代中,伪标签是由在有限的标记数据上训练的DST模型预测的。此外,使用一种对比性自我监督方法来学习更好的表示形式,其中辍学操作增加了数据以训练模型。多WOZ数据集的实验结果表明,我们提出的CSS在几个几次场景中取得了竞争性能。
Few-shot dialogue state tracking (DST) is a realistic problem that trains the DST model with limited labeled data. Existing few-shot methods mainly transfer knowledge learned from external labeled dialogue data (e.g., from question answering, dialogue summarization, machine reading comprehension tasks, etc.) into DST, whereas collecting a large amount of external labeled data is laborious, and the external data may not effectively contribute to the DST-specific task. In this paper, we propose a few-shot DST framework called CSS, which Combines Self-training and Self-supervised learning methods. The unlabeled data of the DST task is incorporated into the self-training iterations, where the pseudo labels are predicted by a DST model trained on limited labeled data in advance. Besides, a contrastive self-supervised method is used to learn better representations, where the data is augmented by the dropout operation to train the model. Experimental results on the MultiWOZ dataset show that our proposed CSS achieves competitive performance in several few-shot scenarios.