论文标题

$ \ mathrm {gl} _2 $的emerton-gee堆栈组件之间的codimension One交叉点

Codimension one intersections between components of the Emerton-Gee stack for $\mathrm{GL}_2$

论文作者

Kansal, Kalyani

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Let $p$ be a fixed odd prime, and let $K$ be a finite extension of $\mathbb{Q}_p$ with ring of integers $\mathcal{O}_K$. The Emerton-Gee stack for $\mathrm{GL}_2$ is a stack of $(φ, Γ)$-modules. The stack, denoted $\mathcal{X}_2$, can be interpreted as a moduli stack of representations of the absolute Galois group of $K$ with $p$-adic coefficients. The reduced part of the Emerton-Gee stack, denoted $\mathcal{X}_{2, \text{red}}$, is an algebraic stack defined over a finite field of characteristic $p$ and can be viewed as a moduli stack of Galois representations with mod $p$ coefficients. The irreducible components of $\mathcal{X}_{2, \text{red}}$ are labelled in a natural way by Serre weights, which are the irreducible mod $p$ representations of $\mathrm{GL}_2(\mathcal{O}_K)$. Each irreducible component of $\mathcal{X}_{2, \text{red}}$ has dimension $[K:\mathbb{Q}_p]$. Motivated by the conjectural categorical $p$-adic Langlands programme, we find representation-theoretic criteria for codimension one intersections of the irreducible components of $\mathcal{X}_{2, \text{red}}$. The methods involve two separate computations and a final comparison between the two. The first of these computations determines extension groups of Serre weights and the second determines all the pairs of irreducible components that intersect in codimension one. We show that a non-trivial extension of a pair of non-isomorphic Serre weights implies a codimension one intersection of the corresponding irreducible components. The converse of this statement is also true when the Serre weights are chosen to be sufficiently generic. Furthermore, we show that the number of top-dimensional components in a codimension one intersection is related to the nature of the extension group of corresponding Serre weights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源