论文标题

部分可观测时空混沌系统的无模型预测

Characterization of anomalous diffusion through convolutional transformers

论文作者

Firbas, Nicolás, Garibo-i-Orts, Òscar, Garcia-March, Miguel Ángel, Conejero, J. Alberto

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The results of the Anomalous Diffusion Challenge (AnDi Challenge) have shown that machine learning methods can outperform classical statistical methodology at the characterization of anomalous diffusion in both the inference of the anomalous diffusion exponent alpha associated with each trajectory (Task 1), and the determination of the underlying diffusive regime which produced such trajectories (Task 2). Furthermore, of the five teams that finished in the top three across both tasks of the AnDi challenge, three of those teams used recurrent neural networks (RNNs). While RNNs, like the long short-term memory (LSTM) network, are effective at learning long-term dependencies in sequential data, their key disadvantage is that they must be trained sequentially. In order to facilitate training with larger data sets, by training in parallel, we propose a new transformer based neural network architecture for the characterization of anomalous diffusion. Our new architecture, the Convolutional Transformer (ConvTransformer) uses a bi-layered convolutional neural network to extract features from our diffusive trajectories that can be thought of as being words in a sentence. These features are then fed to two transformer encoding blocks that perform either regression or classification. To our knowledge, this is the first time transformers have been used for characterizing anomalous diffusion. Moreover, this may be the first time that a transformer encoding block has been used with a convolutional neural network and without the need for a transformer decoding block or positional encoding. Apart from being able to train in parallel, we show that the ConvTransformer is able to outperform the previous state of the art at determining the underlying diffusive regime in short trajectories (length 10-50 steps), which are the most important for experimental researchers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源