论文标题
$ \ mathbb {z} _3 $ parafermion在双重电荷kondo模型中
$\mathbb{Z}_3$ parafermion in the double charge-Kondo model
论文作者
论文摘要
具有沮丧的近托相互作用的量子杂质模型可以用分数激发支持量子关键点。最近在包含两个耦合金属 - 触发器岛的电路上进行了最近的实验[ARXIV:2108.12691],表现出如此临界点的运输特征。在这里,我们使用效率调查表明,可以将描述该设备的双电荷kondo模型映射到图卢卢斯限制中,以绘制到正弦模型中。它的Bethe-Ansatz解决方案表明,$ \ mathbb {z} _3 $ parafermion出现在关键点,其特征在于分数$ \ tfrac {1} {2} {2} {2} \ ln(3)$残留熵,以及散射分数费用费用费用$ e/3 $。我们还为该模型提供了完整的数值重新归一化组计算,并表明导电的预测行为与实验结果一致。
Quantum impurity models with frustrated Kondo interactions can support quantum critical points with fractionalized excitations. Recent experiments [arXiv:2108.12691] on a circuit containing two coupled metal-semiconductor islands exhibit transport signatures of such a critical point. Here we show using bosonization that the double charge-Kondo model describing the device can be mapped in the Toulouse limit to a sine-Gordon model. Its Bethe-ansatz solution shows that a $\mathbb{Z}_3$ parafermion emerges at the critical point, characterized by a fractional $\tfrac{1}{2}\ln(3)$ residual entropy, and scattering fractional charges $e/3$. We also present full numerical renormalization group calculations for the model and show that the predicted behavior of conductance is consistent with experimental results.