论文标题

用八个增压探索类似Seiberg的二元性

Exploring Seiberg-like Dualities with Eight Supercharges

论文作者

Dey, Anindya

论文摘要

我们为3D $ \ MATHCAL {n} = 4 $ $ u(n)$ sqcd提出了一个红外二元性,带有$ n_f $ untagemental口味和$ p $ p $ abelian Hypermultiplets,即$ P $ P $ Hypermultiplets,以确定的量规组代表。这些理论在吉奥托(Gaiotto)的意义上是好的,如果基本口味的数量遵守$ n_f \ geq 2n-1 $的约束,并带有通用$ p \ geq 1 $,并且与标准的$ u(n)$ sqcd相反,他们不承认一个丑陋的制度。有关二元性的IR二元性在窗口中出现$ n_f = 2n+1,2n,2n-1,$,$ p = 1 $在第一种情况下,而其他情况则为generic $ p \ geq 1 $。涉及$ n_f = 2n \ pm 1 $的二元性的特征是二元性一侧的库仑分支全局对称性的IR增强,因此,出现的全局对称组的等级大于紫外全球对称性的等级。双重描述使这种新兴的全局对称性在紫外线中体现出来。此外,可以从双颤动中读取出现的全局对称性本身。我们表明,这些二元性与某些现场理论操作相关,并将自己组装成双重性网络。最后,我们证明了$ u(n)$ sqcds,带有$ n_f \ geq 2n-1 $和$ p $ abelian Hypers具有Lagrangian 3D镜,这允许人们明确写下与给定的IR二元对相关的3D镜。本文是关于3D $ \ Mathcal {n} = 4 $ Seiberg样偶性的四篇论文系列中的第一篇论文。

We propose a family of IR dualities for 3d $\mathcal{N}=4$ $U(N)$ SQCD with $N_f$ fundamental flavors and $P$ Abelian hypermultiplets i.e. $P$ hypermultiplets in the determinant representation of the gauge group. These theories are good in the Gaiotto-Witten sense if the number of fundamental flavors obeys the constraint $N_f \geq 2N-1$ with generic $P \geq 1$, and in contrast to the standard $U(N)$ SQCD, they do not admit an ugly regime. The IR dualities in question arise in the window $N_f=2N+1,2N,2N-1,$ with $P=1$ in the first case and generic $P \geq 1$ for the others. The dualities involving $N_f=2N \pm 1$ are characterized by an IR enhancement of the Coulomb branch global symmetry on one side of the duality, such that the rank of the emergent global symmetry group is greater than the rank of the UV global symmetry. The dual description makes the rank of this emergent global symmetry manifest in the UV. In addition, one can read off the emergent global symmetry itself from the dual quiver. We show that these dualities are related by certain field theory operations and assemble themselves into a duality web. Finally, we show that the $U(N)$ SQCDs with $N_f \geq 2N-1$ and $P$ Abelian hypers have Lagrangian 3d mirrors, and this allows one to explicitly write down the 3d mirror associated with a given IR dual pair. This paper is the first in a series of four papers on 3d $\mathcal{N}=4$ Seiberg-like dualities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源