论文标题
通过AMS-02正电子分数重新审视GEV规模的歼灭暗物质
Revisiting GeV-scale annihilating dark matter with the AMS-02 positron fraction
论文作者
论文摘要
反物质宇宙射线用于探测物理中的新现象,包括暗物质歼灭。我们使用Alpha磁性光谱仪使用宇宙射线正电子分数光谱来搜索银河系中的歼灭信号。我们专注于5至120 GEV质量的暗物质,产生高能电子和正电子。在这些宇宙射线能量中,多个天体物理来源和现象的相互作用使得这种搜索对基本的天体物理背景假设高度敏感。我们为宇宙射线正电子分数背景使用庞大的天体物理模型公共图书馆,以在暗物质的an灭横截面上获得强大的上限,以提供许多灭绝通道。该图书馆说明了不同类型的宇宙射线来源和在时空分布的不确定性。此外,它说明了这些来源的输出,注入星际介质宇宙射线光谱以及对宇宙射线传播的不确定性的不确定性。对于任何给定的暗物质颗粒质量和歼灭通道,歼灭横截面上的上限是由频段给出的,这些频段伸展其值的全数量级。与早期结果相比,我们的工作提供了较弱的限制,但是所有相关的天体不确定性都具有鲁棒性。在5到15 GEV之间,我们发现可能出现宇宙射线电子和正电子的过量通量的指示。大多数但并非所有的天体物理背景参数空间都发现了过多,并且其意义可能会发生明显变化。进一步的审查是为了提高对这些较低能量宇宙射线的理解。最后,我们注意到,即使在这些能量中发现了多余的信号,当前的背景不确定性也不能使我们准确推断其潜在的粒子特性。
Antimatter cosmic-rays are used to probe new phenomena in physics, including dark matter annihilation. We use the cosmic-ray positron fraction spectrum by the Alpha Magnetic Spectrometer, to search for such an annihilation signal in the Galaxy. We focus on dark matter with mass between 5 and 120 GeV, producing high-energy electrons and positrons. In these cosmic-ray energies the interplay of multiple astrophysical sources and phenomena, makes this search highly sensitive to the underlying astrophysical background assumptions. We use a vast public library of astrophysical models for the cosmic-ray positron fraction background, to derive robust upper limits on the dark matter's annihilation cross section for a number of annihilation channels. This library accounts for different types of cosmic-ray sources and uncertainties on their distribution in space and time. Also, it accounts for uncertainties on those sources' output, their injected into the interstellar medium cosmic-ray spectra and for uncertainties on cosmic-ray propagation. For any given dark matter particle mass and annihilation channel, upper limits on the annihilation cross section are given by bands that stretch a full order of magnitude in its value. Our work provides weaker limits compared to earlier results, that are however robust to all the relevant astrophysical uncertainties. Between 5 and 15 GeV, we find indications for a possible excess flux of cosmic-ray electrons and positrons. That excess is found for most, but not all of our astrophysical background parameter space, and its significance can vary appreciably. Further scrutiny is necessary to improve the understanding of these lower energy cosmic rays. Finally, we note that even if an excess signal is found in these energies, the current background uncertainties do not allow us to accurately deduce its underlying particle properties.