论文标题

使用物理信息神经网络重建稀疏嘈杂粒子轨迹的速度和压力

Reconstructing velocity and pressure from sparse noisy particle tracks using Physics-Informed Neural Networks

论文作者

Di Leoni, Patricio Clark, Agarwal, Karuna, Zaki, Tamer, Meneveau, Charles, Katz, Joseph

论文摘要

体积分解成像技术正在迅速发展实验流体力学的进步。但是,从实验上获得的稀疏和嘈杂粒子轨迹的完整和结构化的欧拉速度和压力场仍然是一个重大挑战。我们基于物理知识的神经网络(PINNS)引入了一种重建的新方法。该方法使用由Navier-Stokes方程正规的神经网络插值速度数据并同时确定压力场。我们将这种方法与最新的约束成本最小化方法进行了比较[1]。使用直接数值模拟和各种合成生成的粒子轨道的数据,我们表明,即使在低粒子密度和小加速度的区域,PINN也能够准确地重建速度和压力。当在合成和实验条件下进行研究时,PINns也很健壮,以增加在测量中增加颗粒与测量噪声之间的距离。

Volume-resolving imaging techniques are rapidly advancing progress in experimental fluid mechanics. However, reconstructing the full and structured Eulerian velocity and pressure fields from sparse and noisy particle tracks obtained experimentally remains a significant challenge. We introduce a new method for this reconstruction, based on Physics-Informed Neural Networks (PINNs). The method uses a Neural Network regularized by the Navier-Stokes equations to interpolate the velocity data and simultaneously determine the pressure field. We compare this approach to the state-of-the-art Constrained Cost Minimization method [1]. Using data from direct numerical simulations and various types of synthetically generated particle tracks, we show that PINNs are able to accurately reconstruct both velocity and pressure even in regions with low particle density and small accelerations. PINNs are also robust against increasing the distance between particles and the noise in the measurements, when studied under synthetic and experimental conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源