论文标题
$ \ mathbb {s}^{n+1} $中的MöbiusHypersurfaces
Möbius Homogeneous Hypersurfaces in $\mathbb{S}^{n+1}$
论文作者
论文摘要
令$ \ mathbb {m}(\ mathbb {s}^{n+1})$表示$(n+1)$ - dimensional sphere $ \ mathbb {s} s}^{n+1} $的Möbius变换组。一个高度表面$ x:m^n \ to \ mathbb {s}^{n+1} $,如果存在$ \ mathbb {m mathbb {m mathbb {m mathbb {\ mathbb {s}^{n+1} $ g g $ of y Mathbb {m}^{n+1} $的$ g $ g $ g $ of y mathbb {m mathbb {m mathbb {m mathbb {m mathbb {m math $ g g g g g g g g g g g g g g, x(m^n)$。在本文中,Möbius均匀的Hypersurfaces被完全分类为$ \ Mathbb {s}^{n+1} $的Möbius转换。
Let $\mathbb{M}(\mathbb{S}^{n+1})$ denote the Möbius transformation group of the $(n+1)$-dimensional sphere $\mathbb{S}^{n+1}$. A hypersurface $x:M^n\to \mathbb{S}^{n+1}$ is called a Möbius homogeneous hypersurface if there exists a subgroup $G$ of $\mathbb{M}(\mathbb{S}^{n+1})$ such that the orbit $G\cdot p=x(M^n), p\in x(M^n)$. In this paper, the Möbius homogeneous hypersurfaces are classified completely up to a Möbius transformation of $\mathbb{S}^{n+1}$.