论文标题
可定义的$(P,Q)$ - NIP理论定理
A definable $(p,q)$-theorem for NIP theories
论文作者
论文摘要
我们证明了Matoušek的$(P,Q)$ - 定理的NIP理论定理。这回答了切尔尼科夫和西蒙的问题。我们还证明了统一版本。 该证明是基于Boxall和Kestner的证明,他们利用了在作者作者的作品中出现在Bays和Simon的作者作品中的本地可压缩类型的概念。
We prove a definable version of Matoušek's $(p,q)$-theorem in NIP theories. This answers a question of Chernikov and Simon. We also prove a uniform version. The proof builds on a proof of Boxall and Kestner who proved this theorem in the distal case, utilizing the notion of locally compressible types which appeared in the work of the author with Bays and Simon.