论文标题

术中时间序列的自我解释分层模型

Self-explaining Hierarchical Model for Intraoperative Time Series

论文作者

Li, Dingwen, Xue, Bing, King, Christopher, Fritz, Bradley, Avidan, Michael, Abraham, Joanna, Lu, Chenyang

论文摘要

术后主要并发症对手术患者造成了破坏。这些并发症中的一些可能通过基于术中数据的早期预测来预防。但是,术中数据包括长而细粒的多元时间序列,禁止有效学习准确的模型。通常忽略与临床事件和方案相关的较大差距。此外,深层模型通常缺乏透明度。然而,解释性对于协助临床医生计划和提供术后护理和及时干预至关重要。为此,我们提出了一个层次模型,该模型结合了术中时间序列的注意力和复发模型的强度。我们进一步为层次模型开发了一个解释模块,以通过以细粒度的方式提供术中数据的贡献来解释预测。在具有多个结果的111,888个手术和外部高分辨率ICU数据集的大型数据集上进行的实验表明,我们的模型可以实现强大的预测性能(即高准确性),并为基于术中时间序列的预测效果提供可靠的解释(即高透明度)。

Major postoperative complications are devastating to surgical patients. Some of these complications are potentially preventable via early predictions based on intraoperative data. However, intraoperative data comprise long and fine-grained multivariate time series, prohibiting the effective learning of accurate models. The large gaps associated with clinical events and protocols are usually ignored. Moreover, deep models generally lack transparency. Nevertheless, the interpretability is crucial to assist clinicians in planning for and delivering postoperative care and timely interventions. Towards this end, we propose a hierarchical model combining the strength of both attention and recurrent models for intraoperative time series. We further develop an explanation module for the hierarchical model to interpret the predictions by providing contributions of intraoperative data in a fine-grained manner. Experiments on a large dataset of 111,888 surgeries with multiple outcomes and an external high-resolution ICU dataset show that our model can achieve strong predictive performance (i.e., high accuracy) and offer robust interpretations (i.e., high transparency) for predicted outcomes based on intraoperative time series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源