论文标题

双分布差异差异,并在医学图像中进行自我监督的细化以进行异常检测

Dual-distribution discrepancy with self-supervised refinement for anomaly detection in medical images

论文作者

Cai, Yu, Chen, Hao, Yang, Xin, Zhou, Yu, Cheng, Kwang-Ting

论文摘要

医学异常检测是一项至关重要但具有挑战性的任务,旨在识别异常图像以帮助诊断。由于异常图像的高成本注释,大多数方法在训练过程中仅利用已知的正常图像,并确定从正常剖面偏离正常轮廓的样品在测试阶段中是异常。因此,在训练阶段忽略了许多容易获得的包含异常情况的未标记图像,从而限制了性能。为了解决这个问题,我们介绍了一级半监督学习(OC-SSL),以利用已知的正常和未标记的图像进行训练,并根据此设置提出双分布差异以进行异常检测(DDAD)。重建网络的集合旨在建模正常图像的分布以及正常图像和未标记图像的分布,从而得出规范分布模块(NDM)和未知分布模块(UDM)。随后,两个模块之间的NDM内部验证和隔段术被设计为异常得分。此外,我们提出了关于自我监督学习的新观点,旨在完善异常得分,而不是直接检测异常。五个医学数据集,包括胸部X射线,大脑MRI和视网膜眼底图像,以评估为基准。这些基准的实验全面比较了广泛的异常检测方法,并证明我们的方法可以实现显着的增长,并且表现优于最先进的方法。代码和有组织的基准可以在https://github.com/caiyu6666/ddad-asr上找到。

Medical anomaly detection is a crucial yet challenging task aimed at recognizing abnormal images to assist in diagnosis. Due to the high-cost annotations of abnormal images, most methods utilize only known normal images during training and identify samples deviating from the normal profile as anomalies in the testing phase. Many readily available unlabeled images containing anomalies are thus ignored in the training phase, restricting the performance. To solve this problem, we introduce one-class semi-supervised learning (OC-SSL) to utilize known normal and unlabeled images for training, and propose Dual-distribution Discrepancy for Anomaly Detection (DDAD) based on this setting. Ensembles of reconstruction networks are designed to model the distribution of normal images and the distribution of both normal and unlabeled images, deriving the normative distribution module (NDM) and unknown distribution module (UDM). Subsequently, the intra-discrepancy of NDM and inter-discrepancy between the two modules are designed as anomaly scores. Furthermore, we propose a new perspective on self-supervised learning, which is designed to refine the anomaly scores rather than detect anomalies directly. Five medical datasets, including chest X-rays, brain MRIs and retinal fundus images, are organized as benchmarks for evaluation. Experiments on these benchmarks comprehensively compare a wide range of anomaly detection methods and demonstrate that our method achieves significant gains and outperforms the state-of-the-art. Code and organized benchmarks are available at https://github.com/caiyu6666/DDAD-ASR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源