论文标题
使用树结构估算辐射场的神经反射场
Estimating Neural Reflectance Field from Radiance Field using Tree Structures
论文作者
论文摘要
我们提出了一种新方法,用于从未知照明下的一组摆姿势的多视图图像中估算对象的神经反射率场(NREF)。 NREF以分离的方式表示3D几何形状和物体的外观,并且仅从图像中估算。我们的方法通过利用神经辐射场(NERF)作为代理表示来解决此问题,我们从中进行了进一步的分解。高质量的NERF分解依赖于良好的几何信息提取以及良好的先前条款来正确解决不同组件之间的歧义。为了从辐射场中提取高质量的几何信息,我们重新设计了一种基于射线的新方法,用于表面点提取。为了有效地计算并应用先前的术语,我们将不同的先前术语转换为从辐射场提取的表面上的不同类型的滤波器操作。然后,我们采用两种类型的辅助数据结构,即高斯KD-Tree和Octree,以支持对表面点的快速查询,并在训练过程中对表面过滤器的有效计算。基于此,我们设计了一个多阶段分解优化管道,用于估计神经辐射场的神经反射率场。广泛的实验表明,我们的方法在不同数据上的表现优于其他最先进的方法,并启用高质量的自由视图重新确定以及物质编辑任务。
We present a new method for estimating the Neural Reflectance Field (NReF) of an object from a set of posed multi-view images under unknown lighting. NReF represents 3D geometry and appearance of objects in a disentangled manner, and are hard to be estimated from images only. Our method solves this problem by exploiting the Neural Radiance Field (NeRF) as a proxy representation, from which we perform further decomposition. A high-quality NeRF decomposition relies on good geometry information extraction as well as good prior terms to properly resolve ambiguities between different components. To extract high-quality geometry information from radiance fields, we re-design a new ray-casting based method for surface point extraction. To efficiently compute and apply prior terms, we convert different prior terms into different type of filter operations on the surface extracted from radiance field. We then employ two type of auxiliary data structures, namely Gaussian KD-tree and octree, to support fast querying of surface points and efficient computation of surface filters during training. Based on this, we design a multi-stage decomposition optimization pipeline for estimating neural reflectance field from neural radiance fields. Extensive experiments show our method outperforms other state-of-the-art methods on different data, and enable high-quality free-view relighting as well as material editing tasks.