论文标题
超分辨率通过预测偏移:用于栅格图像的超高效超分辨率网络
Super-Resolution by Predicting Offsets: An Ultra-Efficient Super-Resolution Network for Rasterized Images
论文作者
论文摘要
渲染高分辨率(HR)图形带来了大量的计算成本。有效的图形超分辨率(SR)方法可以通过少量计算资源实现人力资源渲染,并吸引了行业和研究社区的广泛研究兴趣。我们提出了一种用于计算机图形实时SR的新方法,即通过预测偏移(SRPO)来实现超级分辨率。我们的算法将图像分为两个部分进行处理,即锋利的边缘和平坦的区域。对于边缘,不同于以前的SR方法将抗氧化图像作为输入,我们提出的SRPO利用了栅格化图像的特征来对栅格化图像进行SR。为了补充人力资源和低分辨率(LR)栅格图之间的残差,我们训练一个超高效率的网络,以预测偏移图,以将适当的周围像素移至新位置。对于平面区域,我们发现简单的插值方法已经可以产生合理的输出。最终,我们使用引导的融合操作来整合通过插值方法获得最终SR图像的网络和平面区域产生的锋利边缘。所提出的网络仅包含8,434个参数,可以通过网络量化加速。广泛的实验表明,所提出的SRPO可以以比现有的最新方法更小的计算成本实现出色的视觉效果。
Rendering high-resolution (HR) graphics brings substantial computational costs. Efficient graphics super-resolution (SR) methods may achieve HR rendering with small computing resources and have attracted extensive research interests in industry and research communities. We present a new method for real-time SR for computer graphics, namely Super-Resolution by Predicting Offsets (SRPO). Our algorithm divides the image into two parts for processing, i.e., sharp edges and flatter areas. For edges, different from the previous SR methods that take the anti-aliased images as inputs, our proposed SRPO takes advantage of the characteristics of rasterized images to conduct SR on the rasterized images. To complement the residual between HR and low-resolution (LR) rasterized images, we train an ultra-efficient network to predict the offset maps to move the appropriate surrounding pixels to the new positions. For flat areas, we found simple interpolation methods can already generate reasonable output. We finally use a guided fusion operation to integrate the sharp edges generated by the network and flat areas by the interpolation method to get the final SR image. The proposed network only contains 8,434 parameters and can be accelerated by network quantization. Extensive experiments show that the proposed SRPO can achieve superior visual effects at a smaller computational cost than the existing state-of-the-art methods.