论文标题

真正的McKay通信:分级Kleinian群体的KR理论

Real McKay Correspondence: KR-Theory of Graded Kleinian Groups

论文作者

Cheah, Jon

论文摘要

该项目考虑了正交组$ \ mathrm {o}(3)(3)\ subset \ mathrm {gl}(3,\ mathbb {r})$和索引$ 2 $ continments $ g \ g \ lhd \ lhd \ wideHat {g} $。特殊的正​​交组$ \ mathrm {so}(3)\ subset \ mathrm {sl}(3,\ mathbb {r})$允许旋转组$ \ mathrm {spin}(spin}(3)(3)\ cong \ mathrm {surm {su}(2)(2)\ suex(2)(2)\ suex(2)\ suex(2)) \ Mathrm {Sl}(2,\ Mathbb {C})$,并提起我们的子组保留了封存网络。这些子组未包含在$ \ mathrm {so}(3)(3)\ subset \ mathrm {o}(3)$中,将其提升到Pinor组$ \ Mathrm {Pin} _ {\ pm}(3)$,其中有两种选择。对于索引$ 2 $ continments $ g \ lhd \ wideHat {g} $,我们计算了真实且复杂的Frobenius-Schur指示器,并应用Dyson对Antinear Block结构的分类来为每种情况生成装饰的McKay图形。然后,我们探索了Atiyah在1966年介绍的$ KR $理论,这是拓扑$ K $的一种变体,用于与配备有相关性的拓扑空间合作。 git商空间$ \ mathbb {c}^2 // g $,可以通过$ \ wideHat {g} / g $的操作来配备互动。 1983年,冈萨雷斯·史普林伯格(Gonzalez-Sprinberg)和凡尔迪尔(Verdier)展示了人们如何将麦凯对应关系视为$ g $ - equivariant $ k $ -k $ - 理论$ k_g(\ mathbb {c}^2)$与$ k $ - $ k $ - singularity $ \ \ widetildede的最低分辨率的理论} G} $。我们用它来猜测$ C_2 $分组的McKay通信形式和$ KR $ - 理论。

This project considers the finite symmetry subgroups of the orthogonal group $\mathrm{O}(3) \subset \mathrm{GL}(3,\mathbb{R})$ and the index $2$ containments $G\lhd \widehat{G}$. The special orthogonal group $\mathrm{SO}(3) \subset \mathrm{SL}(3,\mathbb{R})$ admits a double cover from the spinor group $\mathrm{Spin}(3) \cong \mathrm{SU}(2) \subset \mathrm{SL}(2,\mathbb{C})$, and lifting our subgroups up preserves the network of containments. Those subgroups not contained in $\mathrm{SO}(3) \subset \mathrm{O}(3) $ are lifted to the pinor groups $\mathrm{Pin}_{\pm}(3)$ of which there are two choices. For the index $2$ containments $G\lhd \widehat{G}$, we calculate the Real and complex Frobenius-Schur indicators, and apply Dyson's classification of antilinear block structures to produce decorated McKay graphs for each case. We then explore $KR$-theory as introduced by Atiyah in 1966, which is a variant of topological $K$-theory for working with topological spaces equipped with an involution. The GIT quotient spaces $\mathbb{C}^2 // G$, can be equipped by an involution via the action of $\widehat{G} / G$. In 1983, Gonzalez-Sprinberg and Verdier showed how one can view the McKay correspondence as an isomorphism between the $G$-equivariant $K$-theory $K_G(\mathbb{C}^2)$ and the $K$-theory of the minimal resolution of the singularity $\widetilde{\mathbb{C}^2 // G}$. We use this to conjecture an analogous a form of the McKay correspondence for $C_2$-graded groups and $KR$-theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源