论文标题

用于面部伪造的多尺度小波变压器

Multi-Scale Wavelet Transformer for Face Forgery Detection

论文作者

Liu, Jie, Wang, Jingjing, Zhang, Peng, Wang, Chunmao, Xie, Di, Pu, Shiliang

论文摘要

当前,许多面对伪造检测方法汇总了空间和频率特征,以增强跨数据集情景下的概括能力并获得有希望的表现。但是,这些方法仅利用限制其表达能力的一个级别频率信息。为了克服这些局限性,我们提出了一个多尺度的小波变压器框架,以进行伪造检测。具体而言,为了充分利用多尺度和多频波表示,我们逐渐在骨干网络的不同阶段逐渐汇总了多尺度小波表示。为了更好地融合频率特征与空间特征,基于频率的空间注意力旨在指导空间特征提取器,以更多地集中在伪造轨迹上。同时,提出了交叉模式的关注,以将频率特征与空间特征融合在一起。这两个注意模块是通过统一的变压器块计算出的,以提高效率。各种各样的实验表明,所提出的方法对内部和交叉数据集都是有效且有效的。

Currently, many face forgery detection methods aggregate spatial and frequency features to enhance the generalization ability and gain promising performance under the cross-dataset scenario. However, these methods only leverage one level frequency information which limits their expressive ability. To overcome these limitations, we propose a multi-scale wavelet transformer framework for face forgery detection. Specifically, to take full advantage of the multi-scale and multi-frequency wavelet representation, we gradually aggregate the multi-scale wavelet representation at different stages of the backbone network. To better fuse the frequency feature with the spatial features, frequency-based spatial attention is designed to guide the spatial feature extractor to concentrate more on forgery traces. Meanwhile, cross-modality attention is proposed to fuse the frequency features with the spatial features. These two attention modules are calculated through a unified transformer block for efficiency. A wide variety of experiments demonstrate that the proposed method is efficient and effective for both within and cross datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源