论文标题

通用Langevin方程的解释

Interpretation of generalized Langevin equations

论文作者

Sabin-Miller, David, Abrams, Daniel M.

论文摘要

许多现实世界的系统在时间上表现出``嘈杂''的演变;将其有限采样的行为解释为由连续的时间过程(在ITô或Stratonovich的意义上)引起的,在各种领域的建模和分析方面取得了重大成功。然而,这种解释取决于基本动力学中随机性的基本线性分离。在这里,我们提出了一些理论系统,这些系统可以抵抗这一定义明确的方程式的简单且一致的解释,需要扩展解释性框架。我们认为,可以始终如一地解释更广泛的随机微分方程,其中进化非线性地取决于随机或有效的随机数量,实际上表现出与等效的ITô过程相一致的有限时间随机行为,在这一点上,许多现有的数值和分析技术都可以使用。我们提出了一种转换方法,并证明了它在玩具系统和直接物理相关系统上的使用:悬浮在湍流中的中级粒子的速度。这项工作可以对广泛的数学模型进行理论和数值检查,否则这些模型可能由于缺乏适当的工具而被过度简化。

Many real-world systems exhibit ``noisy'' evolution in time; interpreting their finitely-sampled behavior as arising from continuous-time processes (in the Itô or Stratonovich sense) has led to significant success in modeling and analysis in a wide variety of fields. Yet such interpretation hinges on a fundamental linear separation of randomness from determinism in the underlying dynamics. Here we propose some theoretical systems which resist easy and self-consistent interpretation into this well-defined class of equations, requiring an expansion of the interpretive framework. We argue that a wider class of stochastic differential equations, where evolution depends nonlinearly on a random or effectively-random quantity, may be consistently interpreted and in fact exhibit finite-time stochastic behavior in line with an equivalent Itô process, at which point many existing numerical and analytical techniques may be used. We put forward a method for this conversion, and demonstrate its use on both a toy system and on a system of direct physical relevance: the velocity of a meso-scale particle suspended in a turbulent fluid. This work enables the theoretical and numerical examination of a wide class of mathematical models which might otherwise be oversimplified due to a lack of appropriate tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源