论文标题

在写之前可视化:想象指导的开放式文本生成

Visualize Before You Write: Imagination-Guided Open-Ended Text Generation

论文作者

Zhu, Wanrong, Yan, An, Lu, Yujie, Xu, Wenda, Wang, Xin Eric, Eckstein, Miguel, Wang, William Yang

论文摘要

文本对图像合成的最新进展使得可以在给定上下文中可视化机器的想象力。另一方面,在生成文本时,人类作家是在创造性可视化中才有天赋的,这可以通过形成蓝图作为蓝图形成想象力来增强他们的著作,然后用文字写下故事。受这种认知过程的启发,我们询问了一个自然的问题,即我们是否可以赋予使用视觉信息并构建上下文的一般图片以指导文本生成的一般图片。在这项工作中,我们建议使用机器生成的图像来指导开放式文本生成中的语言模型。实验和分析证明了ING对开放式文本生成任务的有效性,包括文本完成,故事生成和概念到文本生成,都在几乎没有射击和全数据方案中。自动指标和人类评估都证实了我们的INLG产生的文本片段在显示次要变性的同时是连贯和信息的。

Recent advances in text-to-image synthesis make it possible to visualize machine imaginations for a given context. On the other hand, when generating text, human writers are gifted at creative visualization, which enhances their writings by forming imaginations as blueprints before putting down the stories in words. Inspired by such a cognitive process, we ask the natural question of whether we can endow machines with the same ability to utilize visual information and construct a general picture of the context to guide text generation. In this work, we propose iNLG that uses machine-generated images to guide language models in open-ended text generation. The experiments and analyses demonstrate the effectiveness of iNLG on open-ended text generation tasks, including text completion, story generation, and concept-to-text generation in both few-shot and full-data scenarios. Both automatic metrics and human evaluations verify that the text snippets generated by our iNLG are coherent and informative while displaying minor degeneration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源