论文标题
座谈会:超导杂种结构中的自旋轨道效应
Colloquium: Spin-orbit effects in superconducting hybrid structures
论文作者
论文摘要
自旋轨道耦合(SOC)与电子运动与自旋之间的相互作用有关,并且在固态系统中无处不在。尽管已经对SOC在正常现象中的影响进行了广泛的研究,但其在超导杂种结构和设备中的作用开辟了许多未探索的问题。与超导结构内的隔音和材料不均匀性结合在一起,SOC可能还具有额外的贡献,超出了其在同质材料中的影响。值得注意的是,即使有了良好的磁性或非磁性材料以及常规的S波旋转旋转式超导体,SOC也会导致新兴现象,包括相等的旋转三胞胎配对和拓扑超导率(主机Majoragana),这是约瑟夫森连接界和非裂缝运输中的经过修改的电流相关关系。 SOC还负责在超导结构中转化准粒子,从而增强旋转霍尔效应并改变旋转动力学。综上所述,SOC在超导杂种结构中以及SOC强度进行电气调整的可能性,创造了令人着迷的可能性,以推动超导Spintronic设备用于节能计算,并启用易于拓扑断层的量子计算。通过提供研究SOC的实验技术和理论方法的描述,该座谈会描述了当前对超导结构中产生现象的理解,并提供了一个框架来选择和设计不断增长的SOC的材料系统,其中SOC起着重要作用。
Spin-orbit coupling (SOC) relates to the interaction between an electron's motion and its spin, and is ubiquitous in solid-state systems. Although the effect of SOC in normal-state phenomena has been extensively studied, its role in superconducting hybrid structures and devices opens many unexplored questions. In conjunction with broken symmetries and material inhomogeneities within superconducting hybrid structures, SOC may have additional contributions, beyond its effects in homogenous materials. Remarkably, even with well-established magnetic or nonmagnetic materials and conventional s-wave spin-singlet superconductors, SOC leads to emergent phenomena including equal-spin triplet pairing and topological superconductivity (hosting Majorana states), a modified current-phase relationship in Josephson junctions, and nonreciprocal transport. SOC is also responsible for transforming quasiparticles in superconducting structures which enhances the spin Hall effect and changes spin dynamics. Taken together, SOC in superconducting hybrid structures and the potential for electric tuning of the SOC strength, creates fascinating possibilities to advance superconducting spintronic devices for energy-efficient computing, and enable topological fault-tolerant quantum computing. By providing a description of experimental techniques and theoretical methods to study SOC, this Colloquium describes the current understanding of resulting phenomena in superconducting structures and offers a framework to select and design a growing class of materials systems where SOC plays an important role.