论文标题

多目标和多保真贝叶斯优化激光 - 血浆加速度的优化

Multi-objective and multi-fidelity Bayesian optimization of laser-plasma acceleration

论文作者

Irshad, Faran, Karsch, Stefan, Döpp, Andreas

论文摘要

加速器中的梁参数优化涉及多个,有时是竞争的目标。不可避免地将这些个体目标凝结成一个单一的成绩,这会导致对特定结果的偏见,而通常没有以不谨慎的方式没有先验知识。然后,找到最佳的客观定义需要操作员在许多可能的客观权重和定义上进行迭代,该过程可能需要比优化本身更长的时间。一种更通用的方法是多目标优化,它在目标之间建立了权衡曲线或帕累托前沿。在这里,我们介绍了模拟激光 - 血浆加速器的多目标贝叶斯优化的第一个结果。我们发现,多目标优化达到了与单瞄准剂对应物的可比性能,同时允许立即评估全新的目标。这大大减少了为新问题找到适当的客观定义所需的时间。另外,我们的多目标多志愿方法减少了按数量级运行的优化所需的时间。它通过动态选择模拟分辨率和盒子大小来做到这一点,需要更少的缓慢且昂贵的模拟,因为它可以从快速的低分辨率运行中了解帕累托最佳解决方案。本文所示的技术可以轻松地转化为超出加速器优化的许多不同计算和实验用例。

Beam parameter optimization in accelerators involves multiple, sometimes competing objectives. Condensing these individual objectives into a single figure of merit unavoidably results in a bias towards particular outcomes, in absence of prior knowledge often in a non-desired way. Finding an optimal objective definition then requires operators to iterate over many possible objective weights and definitions, a process that can take many times longer than the optimization itself. A more versatile approach is multi-objective optimization, which establishes the trade-off curve or Pareto front between objectives. Here we present the first results on multi-objective Bayesian optimization of a simulated laser-plasma accelerator. We find that multi-objective optimization reaches comparable performance to its single-objective counterparts while allowing for instant evaluation of entirely new objectives. This dramatically reduces the time required to find appropriate objective definitions for new problems. Additionally, our multi-objective, multi-fidelity method reduces the time required for an optimization run by an order of magnitude. It does so by dynamically choosing simulation resolution and box size, requiring fewer slow and expensive simulations as it learns about the Pareto-optimal solutions from fast low-resolution runs. The techniques demonstrated in this paper can easily be translated into many different computational and experimental use cases beyond accelerator optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源