论文标题

群体融合的极端和准极端频道

Group-covariant extreme and quasi-extreme channels

论文作者

Memarzadeh, Laleh, Sanders, Barry C.

论文摘要

在量子信息理论中,构建一组完全积极的痕量保护(CPTP)图(即量子通道)的所有极端实例,即量子通道。在这里,我们介绍了一种系统的方法,使我们能够准确地构建相对于有限离散组或紧凑型连接的谎言组的协变量的极端渠道。按组表示对量子通道的创新标记使我们能够确定其元素是群体融合通用 - 超级通道的子集的子集。此外,我们利用群体表示理论的要素来引入标签的等效类别,并分区组融合通道的集合。结果,我们表明,构建每个分区的一个代表就足够了。我们通过求解所有候选者的线性和二次方程的系统来构建KRAUS运算符,以构建群体范围的广义 - 发射频道。通过求解线性方程式来确定这些构建的实例是极端还是准极端。我们正式化了构建和分类群体的广义极端通道的问题,从而产生了解决算法的解决方法,我们将其表示为伪代码。为了说明我们方法的应用和价值,我们求解了群体融合极端通道的明确示例。通过无限制的计算资源来执行我们的算法,我们的方法始终为任何有限的希尔伯特空间提供对极端通道的描述,并确保对任何维度的群体相互交流通道的描述,以及任何有限的二线或紧凑型lie组,如果存在这样的极端频道。

Constructing all extreme instances of the set of completely positive trace-preserving (CPTP) maps, i.e., quantum channels, is a challenging valuable open problem in quantum information theory. Here we introduce a systematic approach that enables us to construct exactly those extreme channels that are covariant with respect to a finite discrete group or a compact connected Lie group. Innovative labeling of quantum channels by group representations enables us to identify the subset of group-covariant channels whose elements are group-covariant generalized-extreme channels. Furthermore, we exploit essentials of group representation theory to introduce equivalence classes for the labels and also partition the set of group-covariant channels. As a result we show that it is enough to construct one representative of each partition. We construct Kraus operators for group-covariant generalized-extreme channels by solving systems of linear and quadratic equations for all candidates satisfying the necessary condition for being group-covariant generalized-extreme channels. Deciding whether these constructed instances are extreme or quasi-extreme is accomplished by solving system of linear equations. We formalize the problem of constructing and classifying group-covariant generalized extreme channels, thereby yielding an algorithmic approach to solving, which we express as pseudocode. To illustrate the application and value of our method, we solve for explicit examples of group-covariant extreme channels. With unbounded computational resources to execute our algorithm, our method always delivers a description of an extreme channel for any finite-dimensional Hilbert-space and furthermore guarantees a description of a group-covariant extreme channel for any dimension and for any finite-discrete or compact connected Lie group if such an extreme channel exists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源