论文标题
基于空间 - 基于代码手册的分层梁训练,用于极度大规模的MIMO
Spatial-chirp Codebook-based Hierarchical Beam Training for Extremely Large-Scale Massive MIMO
论文作者
论文摘要
非常大规模的多输入多输出(XL-MIMO)有望提供超高数据速率(mmwave)和Terahertz(THZ)频谱。但是,由大光圈阵列引起的球形波无线传输对通道状态信息(CSI)的获取和波束形成提出了巨大的挑战。在XL-MIMO波束成形中应同时考虑两个独立的参数(物理角度和传输距离),这会带来严重的高架消耗和横梁成形降解。为了解决这个问题,我们利用近场通道特征,并针对近场XL-MIMO系统提出了两个低空的层次梁训练方案。首先,我们将近场通道投射到空间 - 角域和斜率截距域,以捕获详细的表示。然后,我们指出了XL-MIMO分层光束训练的三个关键标准。其次,提出了一种新颖的空间式横梁辅助代码手册和相应的层次更新策略。第三,鉴于空间横梁的不完美覆盖范围和重叠,我们通过多种优化和替代最小化进一步设计了增强的分层训练代码手册。还显示了理论分析和数值模拟,以验证波束形成和训练开销的出色性能。
Extremely large-scale multiple-input multiple-output (XL-MIMO) promises to provide ultrahigh data rates in millimeter-wave (mmWave) and Terahertz (THz) spectrum. However, the spherical-wavefront wireless transmission caused by large aperture array presents huge challenges for channel state information (CSI) acquisition and beamforming. Two independent parameters (physical angles and transmission distance) should be simultaneously considered in XL-MIMO beamforming, which brings severe overhead consumption and beamforming degradation. To address this problem, we exploit the near-field channel characteristic and propose two low-overhead hierarchical beam training schemes for near-field XL-MIMO system. Firstly, we project near-field channel into spatial-angular domain and slope-intercept domain to capture detailed representations. Then we point out three critical criteria for XL-MIMO hierarchical beam training. Secondly, a novel spatial-chirp beam-aided codebook and corresponding hierarchical update policy are proposed. Thirdly, given the imperfect coverage and overlapping of spatial-chirp beams, we further design an enhanced hierarchical training codebook via manifold optimization and alternative minimization. Theoretical analyses and numerical simulations are also displayed to verify the superior performances on beamforming and training overhead.