论文标题
在恒定曲率下最小的亚曼叶量的移动单调性公式
Moving monotonicity formulae for minimal submanifolds in constant curvature
论文作者
论文摘要
我们在空间形式中发现了最小的亚曼佛群岛的新单调公式,这意味着通过大地球球中的规定点绑定了最小的亚曼福尔德区域。这些单调性公式涉及一个类似能量的积分,而不是大地球的球。在欧几里得的情况下,这些集合减少了[Zhu18]第二作者引入的移动中心球。
We discover new monotonicity formulae for minimal submanifolds in space forms, which imply the sharp area bound for minimal submanifolds through a prescribed point in a geodesic ball. These monotonicity formulae involve an energy-like integral over sets which are, in general, not geodesic balls. In the Euclidean case, these sets reduce to the moving-centre balls introduced by the second author in [Zhu18].