论文标题
元管几何光学元件
Metaplectic Geometrical Optics
论文作者
论文摘要
射线光学是通过非均匀介质进行波传播的直观和计算有效的模型。然而,射线光学的基本几何镜头(GO)近似在苛性遗传上分解,错误地预测波强度将是无限的,从而限制了基于GO的代码的预测能力。可以使用全波建模,但增加的计算成本带来了自己的一套权衡。因此,在过去的几十年中,发展更有效的苛性疗法一直是研究的积极研究领域。在本论文中,我提出了一种新的基于射线的方法,称为“元磁几何光学器件”(MGO),该方法可应用于任何线性波方程。 MGO使用混合X = AX+B表示,而不是在通常的X(坐标)或K(频谱)表示中演变的波。通过连续通过测序的波场的元容器变换(MT)沿光线沿射线的系数A和B连续调节,对应于射线相空间的合成性变换,可以确保在没有苛刻奇异性的情况下X坐标保持有效。然后,使用元容器变换映射到原始X空间中,如许多示例所示。除了概述基本理论外,本文还提出了MGO的专门快速算法。这些算法集中在MT上,MT是一个单一积分映射,可以认为是傅立叶变换的概括。首先,开发了MT的离散表示形式,可以在近乎身份限制中进行评估时在线性时间内计算;然后,可以通过迭代$ k \ gg 1 $近乎身份MTS来实现有限的MTS。其次,开发了一种基于高斯的算法 - 纤维正交是用于沿其最陡峭的曲线有效计算有限的MT,这可能在MGO以外的灾难性探针应用中有用。
Ray optics is an intuitive and computationally efficient model for wave propagation through nonuniform media. However, the underlying geometrical-optics (GO) approximation of ray optics breaks down at caustics, erroneously predicting the wave intensity to be infinite and thereby limiting the predictive capabilities of GO-based codes. Full-wave modeling can be used instead, but the added computational cost brings its own set of tradeoffs. Developing more efficient caustic remedies has therefore been an active area of research for the past few decades. In this thesis, I present a new ray-based approach called 'metaplectic geometrical optics' (MGO) that can be applied to any linear wave equation. Instead of evolving waves in the usual x (coordinate) or k (spectral) representation, MGO uses a mixed X=Ax+B representation. By continuously adjusting the coefficients A and B along the rays via sequenced metaplectic transforms (MTs) of the wavefield, corresponding to symplectic transformations of the ray phase space, one can ensure that GO remains valid in the X coordinates without caustic singularities. The caustic-free result is then mapped back onto the original x space using metaplectic transforms, as demonstrated on a number of examples. Besides outlining the basic theory, this thesis also presents specialized fast algorithms for MGO. These algorithms focus on the MT, which is a unitary integral mapping that can be considered a generalization of the Fourier transform. First, a discrete representation of the MT is developed that can be computed in linear time when evaluated in the near-identity limit; finite MTs can then be implemented by iterating $K\gg 1$ near-identity MTs. Second, an algorithm based on Gauss--Freud quadrature is developed for efficiently computing finite MTs along their steepest-descent curves, which may be useful in catastrophe-optics applications beyond MGO.