论文标题
在两种理性图的迭代甲板上
On the deck groups of iterates of bicritical rational maps
论文作者
论文摘要
给定理性地图$ f:\ wideHat {\ mathbb c} \ to \ wideHat {\ m缩式{\ mathbb c} $在riemann Sphere上,我们定义了$ \ mathrm {deck}(f)$,以成为Möbius变换$μ$ F \ f \ f $ f $ ciprips $ f $。在本说明中,我们考虑组$ \ mathrm {deck}(f^k)$,其中$ f $是a \ emph {bicritical}合理地图(即,有两个关键点的合理地图),$ f^k $表示$ k $ t iTerate of $ f $。特别是,我们对哪些组(直至同构)出现了一个完整的描述,因为这些组$ \ mathrm {deck}(f^k)$用于双职理性地图$ f $。
Given a rational map $f:\widehat{\mathbb C}\to\widehat{\mathbb C}$ on the Riemann sphere, we define $\mathrm{Deck}(f)$ to be the group of Möbius transformations $μ$ satisfying $f \circ μ= f$. In this note, we consider the groups $\mathrm{Deck}(f^k)$, where $f$ is a \emph{bicritical} rational map (that is, a rational map with exactly two critical points) and $f^k$ denotes the $k$th iterate of $f$. In particular, we give a complete description of which groups (up to isomorphism) arise as the groups $\mathrm{Deck}(f^k)$ for bicritical rational maps $f$.