论文标题

使用可解释AI的故障诊断:一种基于转移学习的方法,用于利用增强合成数据的旋转机械

Fault Diagnosis using eXplainable AI: a Transfer Learning-based Approach for Rotating Machinery exploiting Augmented Synthetic Data

论文作者

Brito, Lucas Costa, Susto, Gian Antonio, Brito, Jorge Nei, Duarte, Marcus Antonio Viana

论文摘要

人工智能(AI)是提出的一种方法,用于分析收集的数据(例如振动信号),可诊断资产的运营条件。众所周知,经过标记的数据(监督)训练的模型取得了出色的结果,但是两个主要问题使其在生产过程中的应用很难:(i)不可能或很长时间获得所有操作条件的样本(由于很少发生故障),并且(ii)专家的高成本来标记所有获取的数据。在这种情况下,AI方法适用性的另一个限制因素是模型缺乏解释性(黑盒),这降低了用户诊断和信任/采用的信心。为了克服这些问题,在这里提出了一种基于增强合成数据转移到真正旋转机械的转移学习的新的通用和可解释的方法,用于对旋转机械进行分类,这是Namelly Fardd-XAI(使用可解释的AI的故障诊断)。为了使用转移学习提供可伸缩性,创建了合成振动信号,模仿了操作中的故障的特征行为。使用1D卷积神经网络(1D CNN)的梯度加权类激活映射(GRAD-CAM)的应用可以解释结果,从而支持用户决策和增加诊断信心。所提出的方法不仅获得了有希望的诊断性能,而且还能够学习专家使用的特征,以识别源域中的条件并将其应用于另一个目标域。实验结果表明,用于利用转移学习,合成数据和可解释的人工智能的有前途的方法来诊断。最后,为了确保该领域的可重复性和促进研究,已公开可用的数据集。

Artificial Intelligence (AI) is one of the approaches that has been proposed to analyze the collected data (e.g., vibration signals) providing a diagnosis of the asset's operating condition. It is known that models trained with labeled data (supervised) achieve excellent results, but two main problems make their application in production processes difficult: (i) impossibility or long time to obtain a sample of all operational conditions (since faults seldom happen) and (ii) high cost of experts to label all acquired data. Another limitating factor for the applicability of AI approaches in this context is the lack of interpretability of the models (black-boxes), which reduces the confidence of the diagnosis and trust/adoption from users. To overcome these problems, a new generic and interpretable approach for classifying faults in rotating machinery based on transfer learning from augmented synthetic data to real rotating machinery is here proposed, namelly FaultD-XAI (Fault Diagnosis using eXplainable AI). To provide scalability using transfer learning, synthetic vibration signals are created mimicking the characteristic behavior of failures in operation. The application of Gradient-weighted Class Activation Mapping (Grad-CAM) with 1D Convolutional Neural Network (1D CNN) allows the interpretation of results, supporting the user in decision making and increasing diagnostic confidence. The proposed approach not only obtained promising diagnostic performance, but was also able to learn characteristics used by experts to identify conditions in a source domain and apply them in another target domain. The experimental results suggest a promising approach on exploiting transfer learning, synthetic data and explainable artificial intelligence for fault diagnosis. Lastly, to guarantee reproducibility and foster research in the field, the developed dataset is made publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源