论文标题
$ j^+$ - 类分叉下的不变性
$J^+$-like Invariants under Bifurcations
论文作者
论文摘要
我们探讨了不变性$ j^+$,$ j^ - $,$ \ MATHCAL {J} _1 $和$ \ MATHCAL {J} _2 _2 $浸入式的 - 通用(最多是双点,只有横向相互作用,只有横断面的相互作用)平面平稳的曲线,在$ -BBIFURCS中($ -Bifurciess)在$ -BIFURCSC. \ Mathbb {n} $),通过通过沉浸式运行$ k $ times构建,然后将其扰动为通用。
We explore how the invariants $J^+$, $J^-$, $\mathcal{J}_1$ and $\mathcal{J}_2$ of immersions -- generic (at most double points and only transverse intersections) planar smooth closed curves with non-vanishing derivative -- change under $k$-bifurcations ($k \ge 2 \in \mathbb{N}$), which are constructed by running $k$ times through an immersion and then perturbing it to be generic.