论文标题

葡萄:知识图增强的通道读取器,用于开放域问题回答

Grape: Knowledge Graph Enhanced Passage Reader for Open-domain Question Answering

论文作者

Ju, Mingxuan, Yu, Wenhao, Zhao, Tong, Zhang, Chuxu, Ye, Yanfang

论文摘要

开放域问题答案(QA)模型的一个共同线程采用了猎犬阅读器管道,该管道首先从Wikipedia中检索了一些相关段落,然后仔细阅读段落来产生答案。但是,即使是最先进的读者也无法捕获问题出现在问题和检索段落中的实体之间的复杂关系,从而导致答案与事实相矛盾。鉴于此,我们提出了一个新颖的知识图增强了通道读取器,即葡萄,以改善开放域质量核心的读取器性能。具体而言,对于每对问题并检索了段落,我们首先构建了一个局部的两部分图,该图归因于从读取器模型的中间层中提取的实体嵌入。然后,图形神经网络学习关系知识,同时将图形和上下文表示融合到读取器模型的隐藏状态中。三个开放域QA基准测试的实验表明,葡萄可以提高最新的性能,最多可2.2个精确的匹配分数,而略有匹配得分可忽略不计,并带有相同的检索器和检索通道。我们的代码可在https://github.com/jumxglhf/grape上公开获取。

A common thread of open-domain question answering (QA) models employs a retriever-reader pipeline that first retrieves a handful of relevant passages from Wikipedia and then peruses the passages to produce an answer. However, even state-of-the-art readers fail to capture the complex relationships between entities appearing in questions and retrieved passages, leading to answers that contradict the facts. In light of this, we propose a novel knowledge Graph enhanced passage reader, namely Grape, to improve the reader performance for open-domain QA. Specifically, for each pair of question and retrieved passage, we first construct a localized bipartite graph, attributed to entity embeddings extracted from the intermediate layer of the reader model. Then, a graph neural network learns relational knowledge while fusing graph and contextual representations into the hidden states of the reader model. Experiments on three open-domain QA benchmarks show Grape can improve the state-of-the-art performance by up to 2.2 exact match score with a negligible overhead increase, with the same retriever and retrieved passages. Our code is publicly available at https://github.com/jumxglhf/GRAPE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源