论文标题

解决方案的主要基本系统,Hartman-Wintner问题以及一般Sturm-Liouville方程式的可溶性

Principal fundamental system of solutions, The Hartman-Wintner problem and correct solvability of the general Sturm-Liouville equation

论文作者

Chernyavskaya, N., Shuster, L.

论文摘要

我们研究了方程$$ - (r(x)y'(x)y(x)y(x)y(x)y(x)= f(x)= f(x)= f(x),\ quad x \ in \ mathb r $ ge 0,在[1,\ ins)$ in [1,\ ink infty)$中的正确解决性问题\ frac {1} {r} \在l_1(\ mathbb r),\ quad q \ in l_1(\ mathbb r)。$$

We study the problem of correct solvability in the space $L_p(\mathbb R),$ $p\in[1,\infty)$ of the equation $$ -(r(x) y'(x))'+q(x)y(x)=f(x),\quad x\in \mathbb R $$ under the conditions $$r>0,\quad q\ge 0,\quad \frac{1}{r}\in L_1(\mathbb R),\quad q\in L_1(\mathbb R).$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源