论文标题
解决方案的主要基本系统,Hartman-Wintner问题以及一般Sturm-Liouville方程式的可溶性
Principal fundamental system of solutions, The Hartman-Wintner problem and correct solvability of the general Sturm-Liouville equation
论文作者
论文摘要
我们研究了方程$$ - (r(x)y'(x)y(x)y(x)y(x)y(x)= f(x)= f(x)= f(x),\ quad x \ in \ mathb r $ ge 0,在[1,\ ins)$ in [1,\ ink infty)$中的正确解决性问题\ frac {1} {r} \在l_1(\ mathbb r),\ quad q \ in l_1(\ mathbb r)。$$
We study the problem of correct solvability in the space $L_p(\mathbb R),$ $p\in[1,\infty)$ of the equation $$ -(r(x) y'(x))'+q(x)y(x)=f(x),\quad x\in \mathbb R $$ under the conditions $$r>0,\quad q\ge 0,\quad \frac{1}{r}\in L_1(\mathbb R),\quad q\in L_1(\mathbb R).$$