论文标题

与可变指数的Kirchhoff双相问题无限的许多解决方案

Infinitely many solutions to Kirchhoff double phase problems with variable exponents

论文作者

Ho, Ky, Winkert, Patrick

论文摘要

在这项工作中,我们处理由带有Kirchhoff术语的可变指数双相操作员驱动的椭圆方程,并且右侧仅根据非常温和的假设而在本地定义。基于Kajikiya(2005)的抽象临界点结果,以及作者最近的普遍双相问题的先验界限(2022年),我们证明存在一系列非平凡溶液的序列,其$ l^\ suftty $ norms会融合到零。

In this work we deal with elliptic equations driven by the variable exponent double phase operator with a Kirchhoff term and a right-hand side that is just locally defined in terms of very mild assumptions. Based on an abstract critical point result of Kajikiya (2005) and recent a priori bounds for generalized double phase problems by the authors (2022), we prove the existence of a sequence of nontrivial solutions whose $L^\infty$-norms converge to zero.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源