论文标题
某些向量捆绑包的标准
Criteria for the ampleness of certain vector bundles
论文作者
论文摘要
我们证明,某些表面上的向量捆绑包,如果仅限于除数,某些数值标准保留,并且它们是可以半固定的(相对于$ \ det(e)$)。该结果是Schneider和Tancredi定理的高级版本,用于在表面上排名第二。我们还提供反例,表明我们的定理很清晰。
We prove that certain vector bundles over surfaces are ample if they are so when restricted to divisors, certain numerical criteria hold, and they are semistable (with respect to $\det(E)$). This result is a higher-rank version of a theorem of Schneider and Tancredi for vector bundles of rank two over surfaces. We also provide counterexamples indicating that our theorem is sharp.