论文标题

在各向异性网状上的Stokes方程的压力刺激性和符合符合的离散化

Pressure-robust and conforming discretization of the Stokes equations on anisotropic meshes

论文作者

Kempf, Volker

论文摘要

在过去的几年中,对不可压缩流的压力量离散一直是研究的重点。许多出版物恰好构建了无差异方法或使用重建方法[13]用于诸如crouzeix--raviart元素之类的现有方法,以实现压力稳定。据我们所知,除了我们最近的出版物[3,4],所有这些文章都对网格的形状进行了条件,以及允许各向异性元素的两篇论文使用不符合性速度近似。基于经典的Bernardi-Raigel元素,我们使用各向异性网格上的重建方法提供了一种符合压力的离散化。数值示例支持该理论。

Pressure-robust discretizations for incompressible flows have been in the focus of research for the past years. Many publications construct exactly divergence-free methods or use a reconstruction approach [13] for existing methods like the Crouzeix--Raviart element in order to achieve pressure-robustness. To the best of our knowledge, except for our recent publications [3,4], all those articles impose a condition on the shape-regularity of the mesh, and the two mentioned papers that allow for anisotropic elements use a non-conforming velocity approximation. Based on the classical Bernardi--Raugel element we provide a conforming pressure-robust discretization using the reconstruction approach on anisotropic meshes. Numerical examples support the theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源