论文标题

空间 - 周期性图卷积封闭式复发网络,用于流量预测

Spatial-Temporal Graph Convolutional Gated Recurrent Network for Traffic Forecasting

论文作者

Zhao, Le, Chen, Mingcai, Du, Yuntao, Yang, Haiyang, Wang, Chongjun

论文摘要

作为智能运输系统的重要组成部分,交通预测引起了学术界和行业的极大关注。尽管提出了许多用于预测流量的方法,但仍然很难对复杂的时空依赖性进行建模。时间依赖性包括短期依赖性和长期依赖性,后者经常被忽略。空间依赖性可以分为两个部分:基于距离的空间依赖性和隐藏的空间依赖性。为了建模复杂的时空依赖性,我们为流量预测提出了一个新颖的框架,即时空图形卷积封闭式复发网络(STGCGRN)。我们设计了一个注意模块,以通过挖掘流量数据中的定期信息来捕获长期依赖。我们提出了一个双图卷积封闭式复发单元(DGCGRU),以捕获空间依赖性,该空间依赖性集成了图形卷积网络和GRU。图形卷积部分基于距离的空间依赖性将基于距离的预定义邻接矩阵和隐藏的空间依赖性分别与自适应邻接矩阵建模。特别是,我们采用多头机制来捕获多个隐藏的依赖性。此外,每个预测节点的周期性模式可能不同,通常会被忽略,从而在建模空间依赖性时会在节点之间之间的周期性信息相互干扰。为此,我们探索模型的体系结构并提高性能。四个数据集的实验证明了我们的模型的出色性能。

As an important part of intelligent transportation systems, traffic forecasting has attracted tremendous attention from academia and industry. Despite a lot of methods being proposed for traffic forecasting, it is still difficult to model complex spatial-temporal dependency. Temporal dependency includes short-term dependency and long-term dependency, and the latter is often overlooked. Spatial dependency can be divided into two parts: distance-based spatial dependency and hidden spatial dependency. To model complex spatial-temporal dependency, we propose a novel framework for traffic forecasting, named Spatial-Temporal Graph Convolutional Gated Recurrent Network (STGCGRN). We design an attention module to capture long-term dependency by mining periodic information in traffic data. We propose a Double Graph Convolution Gated Recurrent Unit (DGCGRU) to capture spatial dependency, which integrates graph convolutional network and GRU. The graph convolution part models distance-based spatial dependency with the distance-based predefined adjacency matrix and hidden spatial dependency with the self-adaptive adjacency matrix, respectively. Specially, we employ the multi-head mechanism to capture multiple hidden dependencies. In addition, the periodic pattern of each prediction node may be different, which is often ignored, resulting in mutual interference of periodic information among nodes when modeling spatial dependency. For this, we explore the architecture of model and improve the performance. Experiments on four datasets demonstrate the superior performance of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源