论文标题

小型数据解决方案的分散衰减在有限的时间范围

Dispersive Decay Bound of Small Data Solutions to Kawahara Equation in a Finite Time Scale

论文作者

Lee, Jongwon

论文摘要

在本文中,我们证明,较小的局部数据解决方案对川毛型方程的产生解决方案,这些方程在有限的时间内具有线性分散衰减。我们使用类似的方法来得出溶液与KDV方程的分散衰减结合,其中一些步骤更简单。预计该结果将是具有二次非线性的第五阶分散方程的小数据全局界限的第一个结果。

In this article, we prove that small localized data yield solutions to Kawahara type equation which have linear dispersive decay on a finite time. We use the similar method used to derive the dispersive decay bound of the solutions to the KdV equation, with some steps being simpler. This result is expected to be the first result of the small data global bounds of the fifth-order dispersive equations with quadratic nonlinearity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源