论文标题

在网格单元的复发网络中,谎言组表示的共形等轴测图

Conformal Isometry of Lie Group Representation in Recurrent Network of Grid Cells

论文作者

Xu, Dehong, Gao, Ruiqi, Zhang, Wen-Hao, Wei, Xue-Xin, Wu, Ying Nian

论文摘要

哺乳动物大脑内侧内嗅皮层(MEC)中网格细胞群的活性形成动物自我位置的矢量表示。已经提出了复发性神经网络,以根据动物的速度输入来更新神经活动载体来解释网格细胞的特性。在此过程中,网格单元系统有效地执行了路径积分。在本文中,我们使用经常性网络模型研究了网格单元的代数,几何和拓扑特性。从代数上讲,我们研究了谎言群体和谎言代数的反复转化作为自我运动的代表。从几何学上讲,我们研究了谎言组表示的共形等轴测图,其中神经空间中活性向量的局部位移与2D物理空间中药物的局部位移成正比。从拓扑上讲,紧凑的Abelian Lie组表示会自动导致神经科学中通常假定和观察到的圆环拓扑。然后,我们专注于一个简单的非线性复发模型,该模型是网格细胞连续吸引人神经网络的基础。我们的数值实验表明,共形等轴测图导致网格细胞响应中的六边形周期性模式,我们的模型能够准确地整合路径积分。代码可在\ url {https://github.com/dehongxu/grid-cell-rnn}中获得。

The activity of the grid cell population in the medial entorhinal cortex (MEC) of the mammalian brain forms a vector representation of the self-position of the animal. Recurrent neural networks have been proposed to explain the properties of the grid cells by updating the neural activity vector based on the velocity input of the animal. In doing so, the grid cell system effectively performs path integration. In this paper, we investigate the algebraic, geometric, and topological properties of grid cells using recurrent network models. Algebraically, we study the Lie group and Lie algebra of the recurrent transformation as a representation of self-motion. Geometrically, we study the conformal isometry of the Lie group representation where the local displacement of the activity vector in the neural space is proportional to the local displacement of the agent in the 2D physical space. Topologically, the compact abelian Lie group representation automatically leads to the torus topology commonly assumed and observed in neuroscience. We then focus on a simple non-linear recurrent model that underlies the continuous attractor neural networks of grid cells. Our numerical experiments show that conformal isometry leads to hexagon periodic patterns in the grid cell responses and our model is capable of accurate path integration. Code is available at \url{https://github.com/DehongXu/grid-cell-rnn}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源