论文标题
在多对象光谱仪中学习天体人体的收敛预测
Learning convergence prediction of astrobots in multi-object spectrographs
论文作者
论文摘要
Astrobot群用于捕获天文信号,以生成可观察到的宇宙的图,以进行黑暗能源研究。每个群体在协调过程中的收敛性必须超过特定的阈值,以产生令人满意的地图。当前的协调方法并不总是达到所需的收敛速率。此外,这些方法是如此复杂,以至于没有资源按需模拟的情况下就无法正式验证其结果。因此,我们使用支持向量机来训练一个模型,该模型可以根据该群的先前协调数据来预测群的收敛。鉴于固定的奇偶校验,即,与群相对应的Astrobot的外臂的旋转方向,与艺术的状态相比,我们的算法达到了更好的预测性能。此外,我们修改了算法以解决更普遍的收敛预测问题,根据该问题,天体的奇偶群可能会有所不同。我们介绍了与487个astrobot群有关的广义场景的预测结果,与受约束相比,这种情况的过度复杂性,有趣的有效且无碰撞。
Astrobot swarms are used to capture astronomical signals to generate the map of the observable universe for the purpose of dark energy studies. The convergence of each swarm in the course of its coordination has to surpass a particular threshold to yield a satisfactory map. The current coordination methods do not always reach desired convergence rates. Moreover, these methods are so complicated that one cannot formally verify their results without resource-demanding simulations. Thus, we use support vector machines to train a model which can predict the convergence of a swarm based on the data of previous coordination of that swarm. Given a fixed parity, i.e., the rotation direction of the outer arm of an astrobot, corresponding to a swarm, our algorithm reaches a better predictive performance compared to the state of the art. Additionally, we revise our algorithm to solve a more generalized convergence prediction problem according to which the parities of astrobots may differ. We present the prediction results of a generalized scenario, associated with a 487-astrobot swarm, which are interestingly efficient and collision-free given the excessive complexity of this scenario compared to the constrained one.