论文标题
用于求解最大的随机神经形态电路
Stochastic Neuromorphic Circuits for Solving MAXCUT
论文作者
论文摘要
找到图形的最大切割(MaxCut)是一个经典的优化问题,它促使并行算法开发。虽然近似算法对Maxcut提供了有吸引力的理论保证并证明了引人注目的经验表现,但这种近似方法可以将主要的计算成本转移到随机采样操作上。神经形态计算使用神经系统的组织原理来激发新的平行计算体系结构,它提供了一种解决方案。自然大脑的无处不在特征是随机性:生物神经网络的个别要素具有固有的随机性,可以用作能够实现其独特计算能力的资源。通过设计与自然大脑相似的随机性的电路和算法,我们假设微电子设备的固有随机性可以变成神经形态结构的有价值组成部分,从而实现了更有效的计算。在这里,我们提出了神经形态电路,这些回路将随机设备池的随机行为转化为有用的相关性,这些相关性将随机解决方案驱动到Maxcut。我们表明,与软件求解器相比,这些电路表现出色,并认为该神经形态硬件实现为扩展优势提供了途径。这项工作证明了将神经形态原理与内在随机性相结合为新计算体系结构的计算资源的实用性。
Finding the maximum cut of a graph (MAXCUT) is a classic optimization problem that has motivated parallel algorithm development. While approximate algorithms to MAXCUT offer attractive theoretical guarantees and demonstrate compelling empirical performance, such approximation approaches can shift the dominant computational cost to the stochastic sampling operations. Neuromorphic computing, which uses the organizing principles of the nervous system to inspire new parallel computing architectures, offers a possible solution. One ubiquitous feature of natural brains is stochasticity: the individual elements of biological neural networks possess an intrinsic randomness that serves as a resource enabling their unique computational capacities. By designing circuits and algorithms that make use of randomness similarly to natural brains, we hypothesize that the intrinsic randomness in microelectronics devices could be turned into a valuable component of a neuromorphic architecture enabling more efficient computations. Here, we present neuromorphic circuits that transform the stochastic behavior of a pool of random devices into useful correlations that drive stochastic solutions to MAXCUT. We show that these circuits perform favorably in comparison to software solvers and argue that this neuromorphic hardware implementation provides a path for scaling advantages. This work demonstrates the utility of combining neuromorphic principles with intrinsic randomness as a computational resource for new computational architectures.