论文标题
Dibiface-1m:100万个数字脸部图像用于面部识别
DigiFace-1M: 1 Million Digital Face Images for Face Recognition
论文作者
论文摘要
最先进的面部识别模型显示出令人印象深刻的准确性,在野外(LFW)数据集的标签面孔上达到了99.8%以上。此类模型经过大规模数据集的培训,其中包含从互联网收集的数百万个真实的人脸图像。网上爬行的面部图像严重偏见(就种族,照明,化妆等而言),并且通常包含标签噪声。更重要的是,未经明确同意就收集了面部图像,从而引发了道德问题。为了避免此类问题,我们引入了一个大规模的合成数据集,以供面部识别,该数据集是通过使用计算机图形管道渲染数字面而获得的。我们首先证明,积极的数据增强可以显着减少合成域间隙。我们还可以完全控制渲染管道,还研究每个属性(例如面姿势,配件和纹理的变化)如何影响准确性。与Synface相比,一种对GAN生成的合成面训练的方法,我们将LFW的错误率降低了52.5%(精度从91.93%到96.17%)。通过在较少数量的真实面部图像上微调网络,可以合理地获得同意,我们达到的准确性与在数百万真实面部图像上训练的方法相当。
State-of-the-art face recognition models show impressive accuracy, achieving over 99.8% on Labeled Faces in the Wild (LFW) dataset. Such models are trained on large-scale datasets that contain millions of real human face images collected from the internet. Web-crawled face images are severely biased (in terms of race, lighting, make-up, etc) and often contain label noise. More importantly, the face images are collected without explicit consent, raising ethical concerns. To avoid such problems, we introduce a large-scale synthetic dataset for face recognition, obtained by rendering digital faces using a computer graphics pipeline. We first demonstrate that aggressive data augmentation can significantly reduce the synthetic-to-real domain gap. Having full control over the rendering pipeline, we also study how each attribute (e.g., variation in facial pose, accessories and textures) affects the accuracy. Compared to SynFace, a recent method trained on GAN-generated synthetic faces, we reduce the error rate on LFW by 52.5% (accuracy from 91.93% to 96.17%). By fine-tuning the network on a smaller number of real face images that could reasonably be obtained with consent, we achieve accuracy that is comparable to the methods trained on millions of real face images.