论文标题

Dibiface-1m:100万个数字脸部图像用于面部识别

DigiFace-1M: 1 Million Digital Face Images for Face Recognition

论文作者

Bae, Gwangbin, de La Gorce, Martin, Baltrusaitis, Tadas, Hewitt, Charlie, Chen, Dong, Valentin, Julien, Cipolla, Roberto, Shen, Jingjing

论文摘要

最先进的面部识别模型显示出令人印象深刻的准确性,在野外(LFW)数据集的标签面孔上达到了99.8%以上。此类模型经过大规模数据集的培训,其中包含从互联网收集的数百万个真实的人脸图像。网上爬行的面部图像严重偏见(就种族,照明,化妆等而言),并且通常包含标签噪声。更重要的是,未经明确同意就收集了面部图像,从而引发了道德问题。为了避免此类问题,我们引入了一个大规模的合成数据集,以供面部识别,该数据集是通过使用计算机图形管道渲染数字面而获得的。我们首先证明,积极的数据增强可以显着减少合成域间隙。我们还可以完全控制渲染管道,还研究每个属性(例如面姿势,配件和纹理的变化)如何影响准确性。与Synface相比,一种对GAN生成的合成面训练的方法,我们将LFW的错误率降低了52.5%(精度从91.93%到96.17%)。通过在较少数量的真实面部图像上微调网络,可以合理地获得同意,我们达到的准确性与在数百万真实面部图像上训练的方法相当。

State-of-the-art face recognition models show impressive accuracy, achieving over 99.8% on Labeled Faces in the Wild (LFW) dataset. Such models are trained on large-scale datasets that contain millions of real human face images collected from the internet. Web-crawled face images are severely biased (in terms of race, lighting, make-up, etc) and often contain label noise. More importantly, the face images are collected without explicit consent, raising ethical concerns. To avoid such problems, we introduce a large-scale synthetic dataset for face recognition, obtained by rendering digital faces using a computer graphics pipeline. We first demonstrate that aggressive data augmentation can significantly reduce the synthetic-to-real domain gap. Having full control over the rendering pipeline, we also study how each attribute (e.g., variation in facial pose, accessories and textures) affects the accuracy. Compared to SynFace, a recent method trained on GAN-generated synthetic faces, we reduce the error rate on LFW by 52.5% (accuracy from 91.93% to 96.17%). By fine-tuning the network on a smaller number of real face images that could reasonably be obtained with consent, we achieve accuracy that is comparable to the methods trained on millions of real face images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源