论文标题

用于边缘计算的路线图启用了自动多维传输电子显微镜

A roadmap for edge computing enabled automated multidimensional transmission electron microscopy

论文作者

Mukherjee, Debangshu, Roccapriore, Kevin M., Al-Najjar, Anees, Ghosh, Ayana, Hinkle, Jacob D., Lupini, Andrew R., Vasudevan, Rama K., Kalinin, Sergei V., Ovchinnikova, Olga S., Ziatdinov, Maxim A., Rao, Nageswara S.

论文摘要

现代高速电子探测器的出现使多维高度传输电子显微镜数据集(例如4D-STEM)的集合。但是,许多显微镜研究员发现这种实验令人生畏,因为此类数据集的分析,收集,长期存储和网络仍然具有挑战性。一些常见的问题是所述数据集的庞大且笨拙的大小,通常会陷入多个千兆字节,非标准化的数据分析例程,以及对充分利用电子显微镜所需的计算和网络资源缺乏清晰度。但是,现有的计算和网络瓶颈在这些实验的每个步骤中都会引起重大惩罚,因此,实时分析驱动的自动化实验对多维TEM非常具有挑战性。一种解决方案是将显微镜与边缘计算整合在一起,其中适中强大的计算硬件在将较重的计算移交给HPC系统之前执行初步分析。从这个角度来看,我们追踪了现代电子显微镜中计算的根源,展示了在边缘系统上运行的深度学习实验,并讨论将显微镜,边缘计算机和HPC系统绑在一起的网络要求。

The advent of modern, high-speed electron detectors has made the collection of multidimensional hyperspectral transmission electron microscopy datasets, such as 4D-STEM, a routine. However, many microscopists find such experiments daunting since such datasets' analysis, collection, long-term storage, and networking remain challenging. Some common issues are the large and unwieldy size of the said datasets, often running into several gigabytes, non-standardized data analysis routines, and a lack of clarity about the computing and network resources needed to utilize the electron microscope fully. However, the existing computing and networking bottlenecks introduce significant penalties in each step of these experiments, and thus, real-time analysis-driven automated experimentation for multidimensional TEM is exceptionally challenging. One solution is integrating microscopy with edge computing, where moderately powerful computational hardware performs the preliminary analysis before handing off the heavier computation to HPC systems. In this perspective, we trace the roots of computation in modern electron microscopy, demonstrate deep learning experiments running on an edge system, and discuss the networking requirements for tying together microscopes, edge computers, and HPC systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源