论文标题
使用全网格数据输送体系结构和关联记忆技术实时实时带电的粒子跟踪
Charged Particle Tracking in Real-Time Using a Full-Mesh Data Delivery Architecture and Associative Memory Techniques
论文作者
论文摘要
我们提出了一种灵活且可扩展的方法,以解决对撞机物理实验中实时事件过滤器(1级触发器)中带电粒子轨迹重建的挑战。此处描述的方法基于用于数据分布的全网架构,并依赖于实现模式识别算法的关联内存方法,该方法迅速识别并组织了与源自粒子碰撞的粒子轨迹相关的命中。我们描述了由几个创新硬件和算法元素组成的演示系统的成功实现。全尺寸系统的实现取决于以下假设:将来通过专用的ASIC或现代FPGA将来可以使用具有足够模式密度的关联存储器。我们在轨道重建效率,纯度,动量分辨率以及使用模拟LHC样跟踪检测器的数据测量的过程中表现出了出色的性能。
We present a flexible and scalable approach to address the challenges of charged particle track reconstruction in real-time event filters (Level-1 triggers) in collider physics experiments. The method described here is based on a full-mesh architecture for data distribution and relies on the Associative Memory approach to implement a pattern recognition algorithm that quickly identifies and organizes hits associated to trajectories of particles originating from particle collisions. We describe a successful implementation of a demonstration system composed of several innovative hardware and algorithmic elements. The implementation of a full-size system relies on the assumption that an Associative Memory device with the sufficient pattern density becomes available in the future, either through a dedicated ASIC or a modern FPGA. We demonstrate excellent performance in terms of track reconstruction efficiency, purity, momentum resolution, and processing time measured with data from a simulated LHC-like tracking detector.