论文标题
生物处理开发中的机器学习:从承诺到实践
Machine learning in bioprocess development: From promise to practice
论文作者
论文摘要
在新颖的分析技术,数字化和自动化的基础上,现代生物过程开发提供了大量的异质实验数据,其中包含有价值的过程信息。在这种情况下,诸如机器学习(ML)方法之类的数据驱动方法具有很高的潜力,可以最有效地利用实验设施,在合理地探索大型设计空间。这篇综述的目的是证明迄今为止如何在生物过程开发中应用ML方法,尤其是在应变工程和选择中,生物过程优化,扩展,监测和控制生物过程。对于每个主题,我们将重点介绍成功的应用程序案例,当前的挑战并指出可能受益于技术转移和ML领域进一步进展的领域。
Fostered by novel analytical techniques, digitalization and automation, modern bioprocess development provides high amounts of heterogeneous experimental data, containing valuable process information. In this context, data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces while exploiting experimental facilities most efficiently. The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development, especially in strain engineering and selection, bioprocess optimization, scale-up, monitoring and control of bioprocesses. For each topic, we will highlight successful application cases, current challenges and point out domains that can potentially benefit from technology transfer and further progress in the field of ML.