论文标题

通过判别边缘特征学习的图形分类

Graph Classification via Discriminative Edge Feature Learning

论文作者

Yi, Yang, Lu, Xuequan, Gao, Shang, Robles-Kelly, Antonio, Zhang, Yuejie

论文摘要

光谱图卷积神经网络(GCNN)一直在图形分类任务中产生令人鼓舞的结果。但是,大多数光谱GCNN在汇总节点特征时都使用固定的图形,同时省略边缘特征学习并且无法获得最佳的图形结构。此外,许多现有的图形数据集不提供初始化的边缘功能,从而进一步限制了通过光谱GCNN的学习边缘功能的能力。在本文中,我们尝试通过设计边缘功能方案和GCNN中每两个堆叠的图形卷积层之间的附加层来解决此问题。两者都很轻巧,同时有效地填补了边缘特征学习与图形分类的性能增强之间的差距。边缘功能方案使边缘特征适应不同图形卷积层的节点表示。附加层有助于将边缘特征调整为最佳图形结构。为了测试我们方法的有效性,我们将欧几里得位置作为初始节点特征,并从点云对象提取具有语义信息的图形。与大多数现有的图形数据集(以单热编码的标签格式)相比,我们提取图的节点功能对于边缘特征学习更可扩展。基于ModelNet40,ModelNet10和Shapenet Part数据集构建了三个新的图数据集。实验结果表明,我们的方法在新数据集上优于最先进的图形分类方法,通过在Graph-Modelnet40上达到96.56%的总体精度,在Graph-Modelnet10和97.91%上达到了98.79%,而Graph-Modelnet零件上的总准确度。构造的图数据集将发布给社区。

Spectral graph convolutional neural networks (GCNNs) have been producing encouraging results in graph classification tasks. However, most spectral GCNNs utilize fixed graphs when aggregating node features, while omitting edge feature learning and failing to get an optimal graph structure. Moreover, many existing graph datasets do not provide initialized edge features, further restraining the ability of learning edge features via spectral GCNNs. In this paper, we try to address this issue by designing an edge feature scheme and an add-on layer between every two stacked graph convolution layers in GCNN. Both are lightweight while effective in filling the gap between edge feature learning and performance enhancement of graph classification. The edge feature scheme makes edge features adapt to node representations at different graph convolution layers. The add-on layers help adjust the edge features to an optimal graph structure. To test the effectiveness of our method, we take Euclidean positions as initial node features and extract graphs with semantic information from point cloud objects. The node features of our extracted graphs are more scalable for edge feature learning than most existing graph datasets (in one-hot encoded label format). Three new graph datasets are constructed based on ModelNet40, ModelNet10 and ShapeNet Part datasets. Experimental results show that our method outperforms state-of-the-art graph classification methods on the new datasets by reaching 96.56% overall accuracy on Graph-ModelNet40, 98.79% on Graph-ModelNet10 and 97.91% on Graph-ShapeNet Part. The constructed graph datasets will be released to the community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源